Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (5): 91-103.doi: 10.16088/j.issn.1001-6600.2024062302
• Intelligence Information Processing • Previous Articles Next Articles
WANG Zhen, GAO Bingpeng*, CAI Xin, ZHU Jingliang, GUO Sixu
| [1] 赵春晖, 余万科, 高福荣. 非平稳间歇过程数据解析与状态监控: 回顾与展望[J]. 自动化学报, 2020, 46(10): 2072-2091. DOI: 10.16383/j.aas.c190586. [2] 池荣虎, 侯忠生, 黄彪. 间歇过程最优迭代学习控制的发展: 从基于模型到数据驱动[J]. 自动化学报, 2017, 43(6): 917-932. DOI: 10.16383/j.aas.2017.c170086. [3] PENG C, KAI W, PU W. Quality relevant over-complete independent component analysis based monitoring for non-linear and non-Gaussian batch process[J]. Chemometrics and Intelligent Laboratory Systems, 2020, 205: 104140. DOI: 10.1016/j.chemolab.2020.104140. [4] GE Z Q, SONG Z H, GAO F R. Review of recent research on data-based process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 3543-3562. DOI: 10.1021/ie302069q. [5] JIANG Q C, YAN S F, YAN X F, et al. Data-driven two-dimensional deep correlated representation learning for nonlinear batch process monitoring[J]. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2839-2848. DOI: 10.1109/TII.2019.2952931. [6] 高学金, 孟令军, 王豪, 等. 基于分步时空JITL-MKPLS的间歇过程故障监测[J]. 高校化学工程学报, 2021, 35(1): 127-139. DOI: 10.3969/j.issn.1003-9015.2021.01.015. [7] JIANG Q C, GAO F R, YAN X F, et al. Multiobjective two-dimensional CCA-based monitoring for successive batch processes with industrial injection molding application[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 3825-3834. DOI: 10.1109/TIE.2018.2860571. [8] LOUWERSE D J, SMILDE A K. Multivariate statistical process control of batch processes based on three-way models[J]. Chemical Engineering Science, 2000, 55(7): 1225-1235. DOI: 10.1016/S0009-2509(99)00408-X. [9] ZHAO C H, WANG F L, MAO Z Z, et al. Improved knowledge extraction and phase-based quality prediction for batch processes[J]. Industrial & Engineering Chemistry Research, 2008, 47(3): 825-834. DOI: 10.1021/ie0707063. [10] DOAN X T, SRINIVASAN R, BAPAT P M, et al. Detection of phase shifts in batch fermentation via statistical analysis of the online measurements: a case study with rifamycin B fermentation[J]. Journal of Biotechnology, 2007, 132(2): 156-166. DOI: 10.1016/j.jbiotec.2007.06.013. [11] CAMACHO J, PICÓ J. Multi-phase principal component analysis for batch processes modelling[J]. Chemometrics and Intelligent Laboratory Systems, 2006, 81(2): 127-136. DOI: 10.1016/j.chemolab.2005.11.003. [12] LU N Y, GAO F R, WANG F L. Sub-PCA modeling and on-line monitoring strategy for batch processes[J]. AIChE Journal, 2004, 50(1): 255-259. DOI: 10.1002/aic.10024. [13] CAMACHO J, PICÓ J, FERRER A. Multi-phase analysis framework for handling batch process data[J]. Journal of Chemometrics, 2008, 22(11/12): 632-643. DOI: 10.1002/cem.1151. [14] WANG Y J, MAO Z Z, JIA M X, et al. Stage-based variable sampling period modeling and on-line monitoring strategy for uneven-length batch processes[C]// The 26th Chinese Control and Decision Conference (2014 CCDC). Piscataway, NJ: IEEE, 2014: 4501-4506. DOI: 10.1109/CCDC.2014.6852975. [15] LI W Q, ZHAO C H, SUN Y X. Sequential tnequal-iength phase identification and modelling method for fault detection of varying-duration batch processes[J], Cotrol Theoy & Application, 2015, 32: 1226-1232. DOI: 10.7641/CTA.2015.50238. [16] PENG K X, LI Q Q, ZHANG K, et al. Quality-related process monitoring for dynamic non-Gaussian batch process with multi-phase using a new data-driven method[J]. Neurocomputing, 2016, 214: 317-328. DOI: 10.1016/j.neucom.2016.06.018. [17] ZHAO L P, YANG J Y. Batch process monitoring based on quality-related time-batch 2D evolution information[J]. Sensors, 2022, 22(6): 2235. DOI: 10.3390/s22062235. [18] 李征, 王普, 高学金, 等. 基于信息增量矩阵的多阶段间歇过程质量预测[J]. 化工学报, 2018, 69(12): 5164-5172. DOI: 10.11949/j.issn.0438-1157.20180570. [19] 胡磊, 刘强, 吴永建, 等. 间歇过程动态潜结构阶段划分与在线监控[J]. 控制理论与应用, 2022, 39(2):307-316. DOI:10.7641/CTA.2021.00817. [20] ZHENG J J, ZHANG X Y, LIU Y X, et al. Fast sparse PCA via positive semidefinite projection for unsupervised feature selection[EB/OL]. (2023-10-25)[2024-12-20]. https://www.techrxiv.org/users/684400/articles/678866-fast-sparse-pca-via-positive-semidefinite-projection-for-unsupervised-feature-selection. DOI: 10.36227/techrxiv.20976760.v2. [21] LI J W, MA R J, DENG M S, et al. A comparative study of clustering algorithms for intermittent heating demand considering time series[J]. Applied Energy, 2024, 353: 122046. DOI: 10.1016/j.apenergy.2023.122046. [22] 喻思婷, 彭靖静, 彭振赟. 矩阵方程的秩约束最小二乘对称半正定解及其最佳逼近[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 136-144. DOI: 10.16088/j.issn.1001-6600.2021092301. [23] ZHU P F, HU Q H, ZHANG C Q, et al. Coupled dictionary learning for unsupervised feature selection[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2016, 30(1): 2422 - 2428. DOI: 10.1609/aaai.v30i1.10239. [24] 周桥, 翟江涛, 荚东升, 等. 基于卷积门控循环神经网络的Web攻击检测方法[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 51-61. DOI: 10.16088/j.issn.1001-6600.2023022203. [25] 邱天, 丁艳军, 吴占松. 基于主元分析的故障可检测性的统计指标比较[J]. 清华大学学报(自然科学版), 2006, 46(8): 1447-1450. DOI: 10.16511/j.cnki.qhdxxb.2006.08.026. [26] BIROL G, ÜNDEY C, ÇINAR A. A modular simulation package for fed-batch fermentation: penicillin production[J]. Computers & Chemical Engineering, 2002, 26(11): 1553-1565. DOI: 10.1016/S0098-1354(02)00127-8. [27] BAJPAI R K, REUβ M. A mechanistic model for penicillin production[J]. Journal of Chemical Technology and Biotechnology, 1980, 30(1): 332-344. DOI: 10.1002/jctb.503300140. [28] YUE H H, QIN S J. Reconstruction-based fault identification using a combined index[J]. Industrial & Engineering Chemistry Research, 2001, 40(20): 4403-4414. DOI: 10.1021/ie000141+. [29] 高学金, 李学凤, 齐咏生. 基于扩散距离的信息熵FCM多阶段LSTM-AE间歇过程故障监测[J]. 高校化学工程学报, 2023, 37(1):120-130. DOI:10.3969/j.issn.1003-9015.2023.01.015. [30] 姚红娟. 基于数据驱动的间歇过程在线监测与质量预测方法研究[D]. 兰州: 兰州理工大学, 2023. DOI: 10.27206/d.cnki.ggsgu.2023.000026. |
| No related articles found! |
|