Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (5): 52-63.doi: 10.16088/j.issn.1001-6600.2024092101
• Physics and Electronic Engineering • Previous Articles Next Articles
HUANG Yuanyan1,3, LU Xuan1,3, ZHAN Kaijie1,3, ZENG Haiyong1,2,3*
| [1] 詹华,江昌旭, 苏庆列. 基于分层强化学习的电动汽车充电引导方法[J]. 电力自动化设备, 2022, 42(10): 264-272. DOI: 10.16081/j.epae.202208022. [2] MANRÍQUEZ F, SAUMA E, AGUADO J, et al. The impact of electric vehicle charging schemes in power system expansion planning[J]. Applied Energy, 2020, 262: 114527. DOI: 10.1016/j.apenergy.2020.114527. [3] HU J J, YANG G Y, ZIRAS C, et al. Aggregator operation in the balancing market through network-constrained transactive energy[J]. IEEE Transactions on Power Systems, 2019, 34(5): 4071-4080. DOI: 10.1109/TPWRS.2018.2874255. [4] 田梦秋, 承楠, 李长乐. 6G无线网络场景知识研究综述[J]. 无线电通信技术, 2024, 50(3): 484-495. [5] 简富俊, 黄黎明, 汪洋, 等. 智能电网通信系统技术的研究[J]. 自动化应用, 2024(S1): 464-466. DOI: 10.19769/j.zdhy.2024.S1.153. [6] 温昕. 车联网技术在新能源汽车控制系统设计中的应用研究[J]. 装备维修技术, 2024(1): 70-73. DOI: 10.16648/j.cnki.1005-2917.2024.01.017. [7] 高爽, 戴如鑫. 电动汽车集群参与调频辅助服务市场的充电调控策略[J]. 电力系统自动化, 2023, 47(18): 60-67. [8] 郭永强, 张靖, 何宇, 等. 考虑电动汽车充放电响应的微电网混合储能配置[J]. 电网与清洁能源, 2022, 38(8): 82-93. DOI: 10.3969/j.issn.1674-3814.2022.08.011. [9] 吴洲洋, 艾欣, 胡俊杰. 需求侧灵活性资源参与调频辅助服务的备用优化与实时调度[J]. 电力系统自动化, 2021, 45(6): 148-157. DOI: 10.7500/AEPS20200629008. [10] 付学林. 电动汽车混合模式充电调度策略研究[D]. 成都: 电子科技大学, 2020. DOI: 10.27005/d.cnki.gdzku.2020.002099. [11] 傅质馨, 朱韦翰, 朱俊澎, 等. 动态路-电耦合网络下电动出租车快速充电引导及其定价策略[J]. 电力自动化设备, 2022, 42(4): 9-17. DOI: 10.16081/j.epae.202201013. [12] SHEIK M S, IMTHIAS A T P, DEVARAJ D. Optimized charge scheduling of plug-In electric vehicles using modified placement algorithm[C]// 2019 International Conference on Computer Communication and Informatics (ICCCI). January 23-25, 2019. Coimbatore, Tamil Nadu, India. IEEE, 2019: 1-5.. DOI: 10.1109/iccci.2019.8821960. [13] REN J M, WANG H, WEI Y, et al. A novel genetic algorithm-based emergent electric vehicle charging scheduling scheme[C]// IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. October 14-17, 2019, Lisbon, Portugal. IEEE, 2019: 4289-4292. DOI: 10.1109/IECON.2019.8926746. [14] ZHANG J, WANG W, WANG R H, et al. An electric vehicle scheduling strategy for the power grid peak regulation based on V2G[C]// 2023 3rd International Conference on New Energy and Power Engineering (ICNEPE). November 24-26, 2023, Huzhou, China. IEEE, 2023: 1181-1187. DOI: 10.1109/ICNEPE60694.2023.10429591. [15] CHIŞ A, LUNDÉN J, KOIVUNEN V. Reinforcement learning-based plug-in electric vehicle charging with forecasted price[J]. IEEE Transactions on Vehicular Technology, 2017, 66(5): 3674-3684. DOI: 10.1109/TVT.2016.2603536. [16] WAN Z Q, LI H P, HE H B, et al. Model-free real-time EV charging scheduling based on deep reinforcement learning[J]. IEEE Transactions on Smart Grid, 2019, 10(5): 5246-5257. DOI: 10.1109/TSG.2018.2879572. [17] 杜明秋, 李妍, 王标, 等. 电动汽车充电控制的深度增强学习优化方法[J]. 中国电机工程学报, 2019, 39(14): 4042-4049. DOI: 10.13334/j.0258-8013.pcsee.181187. [18] 李航, 李国杰, 汪可友. 基于深度强化学习的电动汽车实时调度策略[J]. 电力系统自动化, 2020, 44(22): 161-167. [19] 黄元清, 刘迪迪, 覃光锋, 等. 计及车主需求的电动汽车聚合商能量调度策略[J]. 南方电网技术, 2024, 18(10): 161-170. DOI: 10.13648/j.cnki.issn1674-0629.2024.10.016. [20] 柴雅琪, 海立卫, 韩颖, 等. 电动汽车站内充电调度优化方法研究[J]. 电工技术, 2024(14): 180-183. DOI: 10.19768/j.cnki.dgjs.2024.14.051. [21] 彭可兴. 基于强化学习的多智能体协作通信策略研究[D]. 南京: 南京信息工程大学, 2024. DOI: 10.27248/d.cnki.gnjqc.2024.000016. [22] 王娟, 陈明,支刚, 等. 电动汽车充电负荷的蒙特卡洛预测方法[J]. 云南电力技术, 2024, 52(4): 10-14. [23] 李培建, 闫锡桐. 一种应用动态规划的通信链路推荐方法[C]// 第三十八届中国(天津)2024'IT、网络、信息技术、电子、仪器仪表创新学术会议论文集. 天津:天津市电子学会, 2024: 235-238. DOI: 10.26914/c.cnkihy.2024.014526. [24] NORD POOL. Historical market data[DB/OL]. (2018-09-17)[2024-09-22]. http://www.nordpoolgroup.com/historical-market-data/. [25] MHAISEN N, FETAIS N, MASSOUD A. Real-time scheduling for electric vehicles charging/discharging using reinforcement learning[C]// 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT). Piscataway, NJ: IEEE, 2020: 1-6. DOI: 10.1109/iciot48696.2020.9089471. |
| [1] | HUANG Renhui, ZHANG Ruifeng, WEN Xiaohao, BI Jinjie, HUANG Shoulin, LI Tinghui. Complex-value Covariance-based Convolutional Neural Network for Decoding Motor Imagery-based EEG Signals [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 43-56. |
| [2] | TANG Liang, CHEN Bowen, NIU Yisen, MA Ronggeng. A YOLOv8-based Real-time Object Detection Method for Vehicles and Pedestrians in Foggy Weather [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 72-83. |
| [3] | LIANG Yinjie, NAN Xinyuan, CAI Xin, LI Yunpeng, GOU Haiguang. Bridge Defect Detection Based on Data Augmentation and Improved YOLOv8 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 84-97. |
| [4] | TIAN Sheng, CHEN Dong. A Joint Eco-driving Optimization Research for Connected Fuel Cell Hybrid Vehicle via Deep Reinforcement Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 67-80. |
| [5] | CHEN Xiufeng, WANG Chengxin, ZHAO Fengyang, YANG Kai, GU Kexin. A Single Intersection Signal Control Method Based on Improved DQN Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 81-88. |
| [6] | TANG Fengzhu, TANG Xin, LI Chunhai, LI Xiaohuan. Dynamic Task Allocation Method for UAVs Based on Deep Reinforcement Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 63-71. |
|