Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (5): 195-206.doi: 10.16088/j.issn.1001-6600.2024101202

• Ecology and Environmental Science Research • Previous Articles     Next Articles

Effects of Microbial Fungicides on Ophiopogon japonicus and Its Growing Soil

ZHANG Jing1,2,3, LIU Qinke1,2,3, FENG Dingsheng4, WANG Rui1,2,3, HUANG Chunping1,2,3*   

  1. 1. College of Life Science, Sichuan Normal University, Chengdu Sichuan 610101, China;
    2. Agricultural Ecological Service Capacity Construction of Sichuan University Engineering Research Center (Sichuan Normal University), Chengdu Sichuan 610066, China;
    3. Plant Functional Genomics and Bioinformatics Research Center (Sichuan Normal University), Chengdu Sichuan 610101, China;
    4. Sichuan Jiewo Biotechnology Limited Company, Chengdu Sichuan 610101, China
  • Received:2024-10-12 Revised:2024-11-19 Online:2025-09-05 Published:2025-08-05

Abstract: Excessive use of chemical fertilisers will change the physical properties of the soil and destroy its structure, and coupled with the effects of continuous cropping barriers, soil nutrient effectiveness will be severely reduced. In this paper, the effects of microbial agents on the physicochemical properties and microbial community structure of soil planted with Ophiopogon japonicus and its soil, which is widely planted in Santai County, Mianyang City, Sichuan Province, the largest Ophiopogon japonicus planting base in the country, were investigated by using the third-generation high-throughput sequencing Illumina MiSeq. The results of the study showed that the yield of Ophiopogon japonicus increased from 5 344.05±987.00 kg/hm2 to 6 501.45±1 154.10 kg/hm2 by 21.63% (P<0.05) after the application of microbial agents. Soil pH significantly increased from 6.50±0.24 to 6.86±0.11 (P<0.05). At the same time, soil organic matter, total nitrogen and total phosphorus content increased to varying degrees. Correlation analysis showed that soil pH and total nitrogen profoundly affected the yield of Ophiopogon japonicus with significant (P<0.05) and highly significant (P<0.01) correlations, respectively. The use of fungicides changed the soil microbiological environment, and the relative abundance of bacterial Acidobacteria, Chloroflexi, and Firmicutes in the soil was significant increased after fungicide application (P<0.05), and that of fungal Basidiomycota was significantly increased (P<0.05); among them, the relative abundance of Bacillus and unclassified_Chaetomiaceae, which had good resistance to plant pathogens, also increased significantly (P<0.05). Correlation analysis showed that the yield of Ophiopogon japonicus was significant positive correlated (P<0.05) with the relative abundance of Bacillus, Nitrosomonadaceae_MND1, Rokubacteriales, Nitrospira, and unclassified_Chaetomiaceae significantly positive correlated (P<0.05) and significantly negative correlated (P<0.05) with the relative abundance of Pseudogulbenkiania. This study showed that the application of microbial fungicides increased the pH of the soil planted with Ophiopogon japonicus, alleviated acidification, and increased the total organic matter, total nitrogen and total phosphorus contents of the soil. Meanwhile, the application of microbial fungicides improved the structure of soil microbial community. The results provide a theoretical basis for the application of microbial agents in the ecological cultivation of Ophiopogon japonicus.

Key words: microbial agents, Ophiopogon japonicus, yield, soil microorganisms, micro-ecology

CLC Number:  S567.232; S144
[1] HUANG J F, HUANG A X, LU L M, et al. Improving the yield of Anoectochilus roxburghii by Bacillus licheniformis cultured in Agaricus bisporus industrial wastewater[J]. Electronic Journal of Biotechnology, 2020, 48: 13-22. DOI: 10.1016/j.ejbt.2020.08.002.
[2] 仝倩倩, 祝英, 崔得领, 等. 我国微生物肥料发展现状及在蔬菜生产中的应用[J]. 中国土壤与肥料, 2022(4): 259-266. DOI: 10.11838/sfsc.1673-6257.21014.
[3] 姜永雷, 肖雨, 邓小鹏, 等. 微生物菌剂对烟草连作土壤理化性质及土壤胞外酶酶活性的影响[J]. 中国烟草学报, 2022,28(4): 59-66. DOI: 10.16472/j.chinatobacco.2021.239.
[4] 蔡宗程, 吕亮雨, 高佩, 等. EM微生物菌剂对高海拔地区燕麦产量品质及土壤质量的影响[J/OL]. 中国土壤与肥料: 1-16[2025-05-26]. http://kns.cnki.net/kcms/detail/11.5498.s.20250513.0943.002.html.
[5] 张小莉, 李宙文, 罗夏燕, 等. 配施微生物菌剂对烤烟根际土壤微生物群落多样性的影响[J/OL]. 西南农业学报:1-15[2025-05-26]. http://kns.cnki.net/kcms/detail/51.1213.s.20250324.1645.031.html.
[6] 拓阳阳, 江其朋, 江连强, 等. 不同微生物菌剂对烟草青枯病的协同防控效果研究[J]. 植物医生, 2021, 34(2): 13-17. DOI: 10.13718/j.cnki.zwys.2021.02.004.
[7] CHENG H Y, ZHANG D Q, HUANG B, et al. Organic fertilizer improves soil fertility and restores the bacterial community after 1,3-dichloropropene fumigation[J]. Science of the Total Environment, 2020, 738: 140345. DOI: 10.1016/j.scitotenv.2020.140345.
[8] 何礼, 金虹, 汤丹丹, 等. 新资源食品川麦冬须根提取物的质量标准研究[J]. 中国食品添加剂, 2022, 33(5): 179-185. DOI: 10.19804/j.issn1006-2513.2022.05.024.
[9] 王义鹏, 蒋辉霞, 叶江红, 等. 4WM-100B型麦冬收获机在三台县的研究及应用情况[J]. 四川农业科技, 2020(8): 72-73, 76.
[10] 孙小芳, 曾华兰, 刘勇, 等. 四川三台县麦冬//玉米间作体系根际微生物多样性及功能分析[J]. 微生物学通报, 2025, 52(1): 290-308. DOI: 10.13344/j. microbiol.china.240284.
[11] 曾嘉, 陈槐, 鲜骏仁, 等. 施肥对川麦冬多糖、黄酮含量和产量的影响[J]. 西南农业学报, 2019,32(7): 1537-1542.DOI: 10.16213/j.cnki.scjas.2019.7.013.
[12] 邢英英, 张富仓, 吴立峰, 等. 基于番茄产量品质水肥利用效率确定适宜滴灌灌水施肥量[J]. 农业工程学报, 2015,31(S1): 110-121.
[13] 侯乐梅, 孟瑞青, 乜兰春, 等. 不同微生物菌剂对基质酶活性和番茄产量及品质的影响[J]. 应用生态学报, 2016, 27(8): 2520-2526. DOI: 10.13287/j.1001-9332.201608.015.
[14] SUN Q H, WU D, ZHANG Z C, et al. Effect of cold-adapted microbial agent inoculation on enzyme activities during composting start-up at low temperature[J]. Bioresource Technology, 2017, 244: 635-640. DOI: 10.1016/j.biortech.2017.08.010.
[15] 刘成明. 麦冬园林栽培与养护措施研究[J]. 中国园艺文摘, 2012, 28(1): 47-49.
[16] 谢光辉, 苏宝林, 崔宗均. 长江流域水稻根际芽孢杆菌属固氮菌株的分离与鉴定[J]. 微生物学报, 1998, 38(6): 480-483. DOI: 10.13343/j.cnki.wsxb.1998.06.012.
[17] 秦利均,杨永柱,杨星勇. 土壤溶磷微生物溶磷、解磷机制研究进展[J]. 生命科学研究, 2019, 23(1): 59-64, 86. DOI: 10.16605/j.cnki.1007-7847.2019.01.009.
[18] 刘坤和, 薛玉琴, 竹兰萍, 等. 嘉陵江滨岸带不同土地利用类型对土壤细菌群落多样性的影响[J]. 环境科学, 2021,43(3): 1620-1629. DOI: 10.13227/j.hjkx.202106174.
[19] ENDL J, SEIDL H P, FIEDLER F, et al. Chemical composition and structure of cell wall teichoic acids of staphylococci[J]. Archives Microbiology, 1983,135(3): 215-223. DOI: 10.1007/bf00414483.
[20] 南镇武, 刘柱, 代红翠, 等. 不同轮作休耕下潮土细菌群落结构特征[J]. 环境科学, 2021, 42(10): 4977-4987. DOI: 10.13227/j.hjkx.202103117.
[21] 姜晶晶. 过量施肥对土壤微生物群落结构的影响[D]. 沈阳; 沈阳农业大学, 2017.
[22] 李文,王陶.解磷菌JL-1对磷矿粉降解性能的研究[J].生物技术通报, 2020, 36(8): 34-44. DOI: 10.13560/j.cnki.biotech.bull.1985.2019-1054.
[23] 许艺, 李红, 巩雪峰 等. 基于高通量测序分析辣椒/玉米套作对辣椒根际土壤细菌多样性的影响[J]. 西南农业学报, 2022, 35(4): 772-779. DOI: 10.16213/j.cnki.scjas.2022.4.006.
[24] 刘志培, 刘双江. 硝化作用微生物的分子生物学研究进展[J]. 应用与环境生物学报, 2004(4): 521-525.
[25] 郭云忠. 毛壳科Chaetomiaceae真菌多基因系统演化及分类鉴定研究[D]. 杨凌:西北农林科技大学, 2012.
[26] 刘亮亮. 强还原土壤消毒防控土传病害效果及其微生物学机制研究[D]. 南京:南京师范大学, 2019. DOI: 10.27245/d.cnki.gnjsu.2019.000394.
[27] DUAN Y, CHEN L, ZHANG J B, et al. Long-term fertilisation reveals close associations between soil organic carbon composition and microbial traits at aggregate scales[J]. Agriculture, Ecosystems & Environment, 2021, 306: 107169. DOI: 10.1016/j.agee.2020.107169.
[28] 芦光新, 李宗仁, 李希来, 等. 三江源区高寒草地不同生境土壤可培养纤维素分解真菌群落结构特征研究[J]. 草业学报, 2016, 25(1): 76-87.
[29] 朱丹, 张磊, 韦泽秀, 等. 菌肥对青稞根际土壤理化性质以及微生物群落的影响[J]. 土壤学报, 2014, 51(3): 627-637.
[30] 李琼芳. 不同连作年限麦冬根际微生物区系动态研究[J]. 土壤通报, 2006(3): 563-565. DOI: 10.19336/j.cnki.trtb.2006.03.035.
[31] 赵春芳, 刘浩, 余龙江. 连作对麦冬根际土壤细菌群落的影响[J]. 微生物学通报, 2010, 37(4): 487-491. DOI: 10.13344/j.microbiol.china.2010.04.021.
[32] 陈法霖, 张凯, 郑华, 等. PCR-DGGE技术解析针叶和阔叶凋落物混合分解对土壤微生物群落结构的影响[J]. 应用与环境生物学报, 2011, 17(2): 145-151.
[33] 李丽, 蒋景龙. 基于高通量测序的西洋参根际土壤细菌群落分析[J]. 中药材, 2019,42(1): 7-12. DOI: 10.13863/j.issn1001-4454.2019.01.002.
[34] 李奇聪,金秋珠,骆海玉,等.柑橘溃疡病生防微生物研究进展[J].广西师范大学学报(自然科学版), 2022, 40(5): 388-397. DOI: 10.16088/j.issn.1001-6600.2022022801.
[35] 乔蓬蕾, 张艳云, 谢全喜, 等. 微生物菌肥修复作物连作障碍的机理[J]. 农村经济与科技, 2015, 26(3): 8-9.
[1] LI Chengen, PAN Xiaoying, WANG Meihan, SHI Jianhua. Research on China’s Grain Output Based on Interval Data Measurement [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 206-215.
[2] LU Yuxiang, NONG Zhiwen, SU Chengyuan, CHEN Ruicong, LIU Fanfan, HUANG Zhi, CHEN Menglin. Efficiency and Micro-ecology of Microaeration-AnaerobicBaffled Reactor Treating Swine Wastewater [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 90-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHONG Qiao, CHEN Shenglong, TANG Congcong. Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 16 -29 .
[2] SHI Huilu, MO Yanhua, LUO Haiyu, MA Jiangming. Inhibitory Activity of Ethyl Acetate Extracts of Loropetalum chinense against Pathogens[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(1): 1 -8 .
[3] HE Qing, LI Dong, LUO Siyuan, HE Yudong, LI Biao, WANG Qiang. Research Progress in Ultra-wideband Rydberg Atomic Antenna Technology[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 1 -19 .
[4] HUANG Renhui, ZHANG Ruifeng, WEN Xiaohao, BI Jinjie, HUANG Shoulin, LI Tinghui. Complex-value Covariance-based Convolutional Neural Network for Decoding Motor Imagery-based EEG Signals[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 43 -56 .
[5] TIAN Sheng, XIONG Chenyin, LONG Anyang. Point Cloud Classification Method of Urban Roads Based on Improved PointNet++[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 1 -14 .
[6] LI Zongxiao, ZHANG Jian, LUO Xinyue, ZHAO Yifei, LU Fei. Research on Arrival Trajectory Prediction Based on K-means and Adam-LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 15 -23 .
[7] SONG Mingkai, ZHU Chengjie. Research on Fault Location of Distribution Network Based on H-WOA-GWO and Region Correction Strategies[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 24 -37 .
[8] HAN Shuo, JIANG Linfeng, YANG Jianbin. Attention-based PINNs Method for Solving Saint-Venant Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 58 -68 .
[9] LI Zhixin, KUANG Wenlan. Fine-grained Image Classification Combining Adaptive Spatial Mutual Attention and Feature Pair Integration Discrimination[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 69 -82 .
[10] SHI Tianyi, NAN Xinyuan, GUO Xiangyu, ZHAO Pu, CAI Xin. Improved ConvNeXt-based Algorithm for Apple Leaf Disease Classification[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 83 -96 .