Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (5): 167-174.doi: 10.16088/j.issn.1001-6600.2024101407

• Mathematics and Statistics • Previous Articles     Next Articles

Solution of Limit Cycles for a Class of Bivariate Chemical Oscillation Reaction Equations

WANG Lin1, WANG Hailing2*   

  1. 1. School of Physics and Technology, Guangxi Normal University, Guilin Guangxi 541004, China;
    2. School of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2024-10-14 Revised:2024-11-20 Online:2025-09-05 Published:2025-08-05

Abstract: In this paper, the problem of solving limit cycles for a class of bivariate chemical oscillation reaction equations is investigated. To solve these equations, firstly, the bivariate chemical oscillation reaction equations are simplified into a general form of Liénard equation and the perturbation increment method is used to solve limit cycles. Starting from the zero-order perturbation solution obtained during the perturbation phase, the increment phase iteratively approximates step by step until the final limit cycle is achieved. Through examples of continuous stirred tank reactor reactions and glycolysis reactions, and compared with numerical integration method, the results show a high degree of consistency, demonstrating the effectiveness of the perturbation-increment method in handling limit cycle problems of such nonlinear dynamic equations.

Key words: Liénard system, perturbation incremental method, limit cycle, continuous stirred tank reactor reactions, glycolysis reactions

CLC Number:  O175
[1] GHOSH S, RAY D S. Rayleigh-type parametric chemical oscillation[J]. The Journal of Chemical Physics, 2015, 143(12): 124901. DOI: 10.1063/1.4931401.
[2] 李勇, 毕勤胜. 连续搅拌槽式反应器中自催化化学反应的延迟同步[J]. 物理学报, 2008, 57(10): 6099-6102. DOI: 10.3321/j.issn:1000-3290.2008.10.010.
[3] KUMAR D, NAMA H, BALEANU D. Dynamical and computational analysis of fractional order mathematical model for oscillatory chemical reaction in closed vessels[J]. Chaos, Solitons and Fractals, 2024, 180: 114560. DOI: 10.1016/j.chaos.2024.114560.
[4] SAHA S, GANGOPADHYAY G. Isochronicity and limit cycle oscillation in chemical systems[J]. Journal of Mathematical Chemistry, 2017, 55(3): 887-910. DOI: 1 0.1007/s10910-016-0729-1.
[5] 朱群雄, 王军霞. 连续搅拌釜式反应器的鲁棒最优控制[J]. 化工学报, 2013, 64(11): 4114-4120. DOI: 10.3969/j.issn.0438-1157.2013.11.031.
[6] 杨颖, 李芳. 随机连续搅拌釜式反应器模型的动力学行为[J]. 东北师大学报(自然科学版), 2023, 55(4): 18-26. DOI: 10.16163/j.cnki.dslkxb202211010002.
[7] OHTAKI M, TANAKA T, MIYAKAWAL K. Noise-induced phase locking in coupled coherence-resonance oscillators[J]. Physical Review E, 2004, 70(5): 056219. DOI: 10.1103/PhysRevE.70.056219.
[8] 陈晓宁, 张坛. 基于化学振荡反应的多参数测量系统设计[J]. 安徽大学学报(自然科学版), 2016, 40(6): 59-63. DOI:10.3969/j.issn.1000-2162.2016.06.011.
[9] 黄文韬, 古结平, 王勤龙. 三维微分系统的极限环与等时中心[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 104-126. DOI: 10.16088/j.issn.1001-6600.2022020702.
[10] 刘桔坤, 黄文韬, 刘宏普. 一类三维三次系统极限环的新下界[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 109-115. DOI: 10.16088/j.issn.1001-6600.2021102002.
[11] KANAI Y, YABUNO H. Creation-annihilation process of limit cycles in the rayleigh-duffing oscillator[J]. Nonlinear Dynamics, 2012, 70(2): 1007-1016. DOI: 10.1007/s11071-012-0508-x
[12] SAHA S, GANGOPADHYAY G. The existence of a stable limit cycle in the Liénard-Levinson-Smith (LLS) equation beyond the LLS theorem[J]. Communications in Nonlinear Science and Numerical Simulation, 2022, 109: 106311. DOI: 10.1016/j.cnsns.2022.106311.
[13] 张二丽, 邢玉清. 具有不变直线的非Hamilton系统的极限环分支[J]. 广西师范大学学报(自然科学版), 2020, 38(3): 45-51. DOI: 10.16088/j.issn.1001-6600.2020.03.006.
[14] CHAN H S Y, CHUNG K W, XU Z. A perturbation-incremental method for strongly non-linear oscillators[J]. International Journal of Non-Linear Mechanics, 1996, 31(1): 59-72.
[15] CAO Y Y, CHUNG K W, XU J. A novel construction of homoclinic and heteroclinic orbits in nonlinear oscillators by a perturbation-incremental method[J]. Nonlinear Dynamics, 2011, 64(3): 221-236. DOI: 10.1007/s11071-011-9990-9.
[16] WANG H L, LI J H, LI Z X, et al. The quantitative analysis of homoclinic orbits from quadratic isochronous systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2023, 121: 107199. DOI: 10.1016/j.cnsns.2023.107191.
[17] WANG H L, CHEN Z, LI Z X, et al. Perturbation incremental method of limit cycle for a nonlinear conveyor belt system[J]. Nonlinear Dynamics, 2021, 104(4): 3533-3545. DOI: 10.1007/s11071-021-06573-2.
[18] KE Q Q, WANG H L, CHEN Z, et al. Quantitative analysis of limit cycles in two-stroke oscillators with exponential functions based on perturbation incremental method[J]. Chaos, Solitons and Fractals, 2024, 188: 115549. DOI: 10.1016/j.chaos.2024.115549.
[1] LIU Jukun, HUANG Wentao, LIU Hongpu. New Lower Bounds of Limit Cycles for a Class of Three-dimensional Cubic Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 109-115.
[2] HUANG Wentao, GU Jieping, WANG Qinlong. Limit Cycles and Isochronous Centers of Three-dimensional Differential Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 104-126.
[3] ZHANG Erli, XING Yuqing. Bifurcation of Limit Cycle for Non-Hamilton System with Invariant Straight Lines [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 45-51.
[4] LI Zhanyong, JIANG Guirong. Some New Results on Lyapunov-branch Theorem [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 128-133.
[5] HE Dongping,HUANG Wentao ,WANG Qinlong. Limit Cycle Flutter and Chaostic Motion of Two-Dimensional Airfoil System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 87-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHONG Qiao, CHEN Shenglong, TANG Congcong. Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 16 -29 .
[2] SHI Huilu, MO Yanhua, LUO Haiyu, MA Jiangming. Inhibitory Activity of Ethyl Acetate Extracts of Loropetalum chinense against Pathogens[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(1): 1 -8 .
[3] HE Qing, LI Dong, LUO Siyuan, HE Yudong, LI Biao, WANG Qiang. Research Progress in Ultra-wideband Rydberg Atomic Antenna Technology[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 1 -19 .
[4] HUANG Renhui, ZHANG Ruifeng, WEN Xiaohao, BI Jinjie, HUANG Shoulin, LI Tinghui. Complex-value Covariance-based Convolutional Neural Network for Decoding Motor Imagery-based EEG Signals[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 43 -56 .
[5] TIAN Sheng, XIONG Chenyin, LONG Anyang. Point Cloud Classification Method of Urban Roads Based on Improved PointNet++[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 1 -14 .
[6] LI Zongxiao, ZHANG Jian, LUO Xinyue, ZHAO Yifei, LU Fei. Research on Arrival Trajectory Prediction Based on K-means and Adam-LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 15 -23 .
[7] SONG Mingkai, ZHU Chengjie. Research on Fault Location of Distribution Network Based on H-WOA-GWO and Region Correction Strategies[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 24 -37 .
[8] HAN Shuo, JIANG Linfeng, YANG Jianbin. Attention-based PINNs Method for Solving Saint-Venant Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 58 -68 .
[9] LI Zhixin, KUANG Wenlan. Fine-grained Image Classification Combining Adaptive Spatial Mutual Attention and Feature Pair Integration Discrimination[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 69 -82 .
[10] SHI Tianyi, NAN Xinyuan, GUO Xiangyu, ZHAO Pu, CAI Xin. Improved ConvNeXt-based Algorithm for Apple Leaf Disease Classification[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 83 -96 .