Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (5): 167-174.doi: 10.16088/j.issn.1001-6600.2024101407
• Mathematics and Statistics • Previous Articles Next Articles
WANG Lin1, WANG Hailing2*
| [1] GHOSH S, RAY D S. Rayleigh-type parametric chemical oscillation[J]. The Journal of Chemical Physics, 2015, 143(12): 124901. DOI: 10.1063/1.4931401. [2] 李勇, 毕勤胜. 连续搅拌槽式反应器中自催化化学反应的延迟同步[J]. 物理学报, 2008, 57(10): 6099-6102. DOI: 10.3321/j.issn:1000-3290.2008.10.010. [3] KUMAR D, NAMA H, BALEANU D. Dynamical and computational analysis of fractional order mathematical model for oscillatory chemical reaction in closed vessels[J]. Chaos, Solitons and Fractals, 2024, 180: 114560. DOI: 10.1016/j.chaos.2024.114560. [4] SAHA S, GANGOPADHYAY G. Isochronicity and limit cycle oscillation in chemical systems[J]. Journal of Mathematical Chemistry, 2017, 55(3): 887-910. DOI: 1 0.1007/s10910-016-0729-1. [5] 朱群雄, 王军霞. 连续搅拌釜式反应器的鲁棒最优控制[J]. 化工学报, 2013, 64(11): 4114-4120. DOI: 10.3969/j.issn.0438-1157.2013.11.031. [6] 杨颖, 李芳. 随机连续搅拌釜式反应器模型的动力学行为[J]. 东北师大学报(自然科学版), 2023, 55(4): 18-26. DOI: 10.16163/j.cnki.dslkxb202211010002. [7] OHTAKI M, TANAKA T, MIYAKAWAL K. Noise-induced phase locking in coupled coherence-resonance oscillators[J]. Physical Review E, 2004, 70(5): 056219. DOI: 10.1103/PhysRevE.70.056219. [8] 陈晓宁, 张坛. 基于化学振荡反应的多参数测量系统设计[J]. 安徽大学学报(自然科学版), 2016, 40(6): 59-63. DOI:10.3969/j.issn.1000-2162.2016.06.011. [9] 黄文韬, 古结平, 王勤龙. 三维微分系统的极限环与等时中心[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 104-126. DOI: 10.16088/j.issn.1001-6600.2022020702. [10] 刘桔坤, 黄文韬, 刘宏普. 一类三维三次系统极限环的新下界[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 109-115. DOI: 10.16088/j.issn.1001-6600.2021102002. [11] KANAI Y, YABUNO H. Creation-annihilation process of limit cycles in the rayleigh-duffing oscillator[J]. Nonlinear Dynamics, 2012, 70(2): 1007-1016. DOI: 10.1007/s11071-012-0508-x [12] SAHA S, GANGOPADHYAY G. The existence of a stable limit cycle in the Liénard-Levinson-Smith (LLS) equation beyond the LLS theorem[J]. Communications in Nonlinear Science and Numerical Simulation, 2022, 109: 106311. DOI: 10.1016/j.cnsns.2022.106311. [13] 张二丽, 邢玉清. 具有不变直线的非Hamilton系统的极限环分支[J]. 广西师范大学学报(自然科学版), 2020, 38(3): 45-51. DOI: 10.16088/j.issn.1001-6600.2020.03.006. [14] CHAN H S Y, CHUNG K W, XU Z. A perturbation-incremental method for strongly non-linear oscillators[J]. International Journal of Non-Linear Mechanics, 1996, 31(1): 59-72. [15] CAO Y Y, CHUNG K W, XU J. A novel construction of homoclinic and heteroclinic orbits in nonlinear oscillators by a perturbation-incremental method[J]. Nonlinear Dynamics, 2011, 64(3): 221-236. DOI: 10.1007/s11071-011-9990-9. [16] WANG H L, LI J H, LI Z X, et al. The quantitative analysis of homoclinic orbits from quadratic isochronous systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2023, 121: 107199. DOI: 10.1016/j.cnsns.2023.107191. [17] WANG H L, CHEN Z, LI Z X, et al. Perturbation incremental method of limit cycle for a nonlinear conveyor belt system[J]. Nonlinear Dynamics, 2021, 104(4): 3533-3545. DOI: 10.1007/s11071-021-06573-2. [18] KE Q Q, WANG H L, CHEN Z, et al. Quantitative analysis of limit cycles in two-stroke oscillators with exponential functions based on perturbation incremental method[J]. Chaos, Solitons and Fractals, 2024, 188: 115549. DOI: 10.1016/j.chaos.2024.115549. |
| [1] | LIU Jukun, HUANG Wentao, LIU Hongpu. New Lower Bounds of Limit Cycles for a Class of Three-dimensional Cubic Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 109-115. |
| [2] | HUANG Wentao, GU Jieping, WANG Qinlong. Limit Cycles and Isochronous Centers of Three-dimensional Differential Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 104-126. |
| [3] | ZHANG Erli, XING Yuqing. Bifurcation of Limit Cycle for Non-Hamilton System with Invariant Straight Lines [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 45-51. |
| [4] | LI Zhanyong, JIANG Guirong. Some New Results on Lyapunov-branch Theorem [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 128-133. |
| [5] | HE Dongping,HUANG Wentao ,WANG Qinlong. Limit Cycle Flutter and Chaostic Motion of Two-Dimensional Airfoil System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 87-95. |
|