Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (4): 38-57.doi: 10.16088/j.issn.1001-6600.2024062402

• Intelligence Information Processing • Previous Articles     Next Articles

Wind Speed Prediction Model Based on QMD-LDBO-BiGRU

CHEN Yu, CHEN Lei*, ZHANG Yi, ZHANG Zhirui   

  1. College of Electrical Engineering, North China University of Science and Technology, Tangshan Hebei 063210, China
  • Received:2024-06-24 Revised:2024-09-16 Online:2025-07-05 Published:2025-07-14

Abstract: In order to reduce the randomness and volatility of wind speed and further improve the prediction accuracy, a combined prediction model combining with quadratic mode decomposition, which can improve dung beetle optimizer and bidirectional gated recurrent unit was proposed. Firstly, aiming at the problems such as local optimization and poor global search ability in Dung Beetle optimizer (DBO), the improved algorithm (LDBO) is improved by introducing Latin hypercube sampling, tangential flight and other strategies, and the improved algorithm (LDBO) is used for parameter optimization of BiGRU. Secondly, the quadratic modal decomposition is used to reduce the complexity of the original data and provide stable sequence data for subsequent modeling. Then, BiGRU is used to predict each modal component obtained after the quadratic mode decomposition, and the prediction results of each modal component are superimposed as the final prediction results. Finally, the proposed QMD-LDBO-BiGRU prediction model is compared with other four mainstream prediction models (CNN-LSTM, TCN-RVM, ELM-Adaboost, BiTCN-SVM). Experimental results show that the evaluation index R2 of the QMD-LDBO-BiGRU model reaches 98.086%, which is increased by 21.396, 19.525, 11.474, 5.457 percentage points compared with the comparison model, respectively, which verifies the effectiveness and applicability of the proposed model and provides a certain reference for further improving the accuracy of wind speed prediction.

Key words: wind speed prediction, quadratic mode decomposition, CEEMDAN, VMD, Dung beetle optimizer, bidirectional gated recurrent unit

CLC Number:  TM614;TP18
[1] LIU H, CHEN C. Data processing strategies in wind energy forecasting models and applications: a comprehensive review[J]. Applied Energy, 2019, 249: 392-408. DOI: 10.1016/j.apenergy.2019.04.188.
[2] 赵泽妮,云斯宁,贾凌云,等.基于统计模型的短期风能预测方法研究进展[J].太阳能学报,2022,43(11): 224-234. DOI: 10.19912/j.0254-0096.tynxb.2021-0500.
[3] LI Z M, WU L, XU Y, et al. Distributed tri-layer risk-averse stochastic game approach for energy trading among multi-energy microgrids[J]. Applied Energy, 2023, 331: 120282. DOI: 10.1016/j.apenergy.2022.120282.
[4] ZHOU Y, ZHOU N R, GONG L H, et al. Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine[J]. Energy, 2020, 204: 117894. DOI: 10.1016/j.energy.2020.117894.
[5] 韦振汉,宋树祥,夏海英.基于随机森林的锂离子电池荷电状态估算[J].广西师范大学学报(自然科学版),2018,36(4): 27-33. DOI: 10.16088/j.issn.1001-6600.2018.04.004.
[6] ZHANG J L, LIU Z Y, CHEN T. Interval prediction of ultra-short-term photovoltaic power based on a hybrid model[J]. Electric Power Systems Research, 2023, 216: 109035. DOI: 10.1016/j.epsr.2022.109035.
[7] ZHOU H Y R, ZHOU Y H, HU J J, et al. LSTM-based energy management for electric vehicle charging in commercial-building prosumers[J]. Journal of Modern Power Systems and Clean Energy, 2021, 9(5): 1205-1216. DOI: 10.35833/MPCE.2020.000501.
[8] FARHI N, KOHEN E, MAMANE H, et al. Prediction of wastewater treatment quality using LSTM neural network[J]. Environmental Technology & Innovation, 2021, 23: 101632. DOI: 10.1016/j.eti.2021.101632.
[9] KHOSRAVI A, MACHADO L, NUNES R O. Time-series prediction of wind speed using machine learning algorithms: A case study Osorio wind farm, Brazil[J]. Applied Energy, 2018, 224: 550-566. DOI: 10.1016/j.apenergy.2018.05.043.
[10] KULAMALA V K, KUMAR L, MOHAPATRA D P. Software fault prediction using LSSVM with different kernel functions[J]. Arabian Journal for Science and Engineering, 2021,46(9): 8655-8664. DOI: 10.1007/s13369-021-05643-2.
[11] PEI S Q, QIN H, ZHANG Z D, et al. Wind speed prediction method based on Empirical Wavelet Transform and New Cell Update Long Short-Term Memory network[J]. Energy Conversion and Management, 2019, 196: 779-792. DOI: 10.1016/j.enconman.2019.06.041.
[12] WANG Y S, LIAO W L, CHANG Y Q. Gated recurrent unit network-based short-term photovoltaic forecasting[J]. Energies, 2018, 11(8): 2163. DOI: 10.3390/en11082163.
[13] DAMESHGHI A, REFAN M H. Combination of condition monitoring and prognosis systems based on current measurement and PSO-LS-SVM method for wind turbine DFIGs with rotor electrical asymmetry[J]. Energy Systems, 2021, 12(1): 203-232. DOI: 10.1007/s12667-019-00357-9.
[14] 颜宏文,卢格宇.CEEMD-WT和CNN在短期风速预测中的应用研究[J].计算机工程与应用,2018,54(9): 224-230. DOI: 10.3778/j.issn.1002-8331.1612-0256.
[15] 金子皓,向玲,李林春,等.基于完备集合经验模态分解的SE-BiGRU超短期风速预测[J].电力科学与工程,2023,39(1): 9-16. DOI: 10.3969/j.ISSN.1672-0792.2023.01.002.
[16] XUE J K, SHEN B. Dung Beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7): 7305-7336. DOI: 10.1007/s11227-022-04959-6.
[17] ROSLI S J, RAHIM H A, ABDUL RANI K N, et al. A hybrid modified method of the sine cosine algorithm using Latin hypercube sampling with the cuckoo search algorithm for optimization problems[J]. Electronics, 2020, 9(11): 1786. DOI: 10.3390/electronics9111786.
[18] WANG Q Y, NAKASHIMA T, LAI C G, et al. Modified algorithms for fast construction of optimal Latin-hypercube design[J]. IEEE Access, 2020, 8: 191644-191658. DOI: 10.1109/ACCESS.2020.3032122.
[19] LAYEB A. Tangent search algorithm for solving optimization problems[J]. Neural Computing and Applications, 2022, 34(11): 8853-8884. DOI: 10.1007/s00521-022-06908-z.
[20] TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]//2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway, NJ: IEEE Press, 2011: 4144-4147. DOI: 10.1109/ICASSP.2011.5947265.
[21] HUANG S C, ZHANG J, HE Y, et al. Short-term load forecasting based on the CEEMDAN-sample entropy-BPNN-transformer[J]. Energies, 2022, 15(10): 3659. DOI: 10.3390/en15103659.
[22] 吉兴全,赵国航,叶平峰,等.基于QMD-HBiGRU的短期光伏功率预测方法[J].高电压技术,2024,50(9): 3850-3859. DOI: 10.13336/j.1003-6520.hve.20230333.
[23] MORENO S R, DA SILVA R G, MARIANI V C, et al. Multi-step wind speed forecasting based on hybrid multi-stage decomposition model and long short-term memory neural network[J]. Energy Conversion and Management, 2020, 213: 112869. DOI: 10.1016/j.enconman.2020.112869.
[24] RICHMAN J S, MOORMAN J R. Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology Heart and Circulatory Physiology, 2000, 278(6): H2039-H2049. DOI: 10.1152/ajpheart.2000.278.6.h2039.
[25] LI X C, MA X F, XIAO F C, et al. Application of gated recurrent unit (GRU) neural network for smart batch production prediction[J]. Energies, 2020, 13(22): 6121. DOI: 10.3390/en13226121.
[26] 邹智,吴铁洲,张晓星,等.基于贝叶斯优化CNN-BiGRU混合神经网络的短期负荷预测[J].高电压技术,2022,48(10): 3935-3945. DOI: 10.13336/j.1003-6520.hve.20220168.
[27] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. DOI: 10.1016/j.advengsoft.2013.12.007.
[28] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. DOI: 10.1016/j.advengsoft.2016.01.008.
[29] MIRJALILI S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm[J]. Knowledge-based Systems, 2015, 89: 228-249. DOI: 10.1016/j.knosys.2015.07.006.
[30] ASKARZADEH A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm[J]. Computers & Structures, 2016, 169: 1-12. DOI: 10.1016/j.compstruc.2016.03.001.
[31] 刘睿,莫愿斌.增强型麻雀搜索算法及其工程优化应用[J].小型微型计算机系统,2023,44(3): 497-505. DOI: 10.20009/j.cnki.21-1106/TP.2021-0591.
[32] HUANG N T, WU Y Y, CAI G W, et al. Short-term wind speed forecast with low loss of information based on feature generation of OSVD[J]. IEEE Access, 2019, 7: 81027-81046. DOI: 10.1109/access.2019.2922662.
[1] TAN Quanwei, XUE Guijun, XIE Wenju. Short-Term Heating Load Prediction Model Based on VMD and RDC-Informer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 39-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Ankang, CHEN Yanping, HU Ying, HUANG Ruizhang, QIN Yongbin. Fusing Boundary Interaction Information for Named Entity Recognition[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 1 -11 .
[2] LU Zhanyue, CHEN Yanping, YANG Weizhe, HUANG Ruizhang, QIN Yongbin. Relational Extraction Method Based on Mask Attention and Multi-feature Convolutional Networks[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 12 -22 .
[3] QI Dandan, WANG Changzheng, GUO Shaoru, YAN Zhichao, HU Zhiwei, SU Xuefeng, MA Boxiang, LI Shizhao, LI Ru. Topic-based Multi-view Entity Representation for Zero-Shot Entity Retrieval[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 23 -34 .
[4] HUANG Chuanyang, CHENG Can’er, LI Songwei, CHENG Hongdong, ZHANG Qiunan, ZHANG Zhao, SHAO Laipeng, TANG Jian, WANG Yongmei, GUO Kuikui, LU Hanglin, HU Junhui. Study on Temperature Sensing Characteristics of Long Period Fiber Grating with Coating Layer[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 35 -42 .
[5] TIAN Sheng, XIONG Chenyin, LONG Anyang. Point Cloud Classification Method of Urban Roads Based on Improved PointNet++[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 1 -14 .
[6] LI Zongxiao, ZHANG Jian, LUO Xinyue, ZHAO Yifei, LU Fei. Research on Arrival Trajectory Prediction Based on K-means and Adam-LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 15 -23 .
[7] SONG Mingkai, ZHU Chengjie. Research on Fault Location of Distribution Network Based on H-WOA-GWO and Region Correction Strategies[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 24 -37 .
[8] HAN Shuo, JIANG Linfeng, YANG Jianbin. Attention-based PINNs Method for Solving Saint-Venant Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 58 -68 .
[9] LI Zhixin, KUANG Wenlan. Fine-grained Image Classification Combining Adaptive Spatial Mutual Attention and Feature Pair Integration Discrimination[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 69 -82 .
[10] SHI Tianyi, NAN Xinyuan, GUO Xiangyu, ZHAO Pu, CAI Xin. Improved ConvNeXt-based Algorithm for Apple Leaf Disease Classification[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 83 -96 .