Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (4): 38-57.doi: 10.16088/j.issn.1001-6600.2024062402
• Intelligence Information Processing • Previous Articles Next Articles
CHEN Yu, CHEN Lei*, ZHANG Yi, ZHANG Zhirui
| [1] LIU H, CHEN C. Data processing strategies in wind energy forecasting models and applications: a comprehensive review[J]. Applied Energy, 2019, 249: 392-408. DOI: 10.1016/j.apenergy.2019.04.188. [2] 赵泽妮,云斯宁,贾凌云,等.基于统计模型的短期风能预测方法研究进展[J].太阳能学报,2022,43(11): 224-234. DOI: 10.19912/j.0254-0096.tynxb.2021-0500. [3] LI Z M, WU L, XU Y, et al. Distributed tri-layer risk-averse stochastic game approach for energy trading among multi-energy microgrids[J]. Applied Energy, 2023, 331: 120282. DOI: 10.1016/j.apenergy.2022.120282. [4] ZHOU Y, ZHOU N R, GONG L H, et al. Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine[J]. Energy, 2020, 204: 117894. DOI: 10.1016/j.energy.2020.117894. [5] 韦振汉,宋树祥,夏海英.基于随机森林的锂离子电池荷电状态估算[J].广西师范大学学报(自然科学版),2018,36(4): 27-33. DOI: 10.16088/j.issn.1001-6600.2018.04.004. [6] ZHANG J L, LIU Z Y, CHEN T. Interval prediction of ultra-short-term photovoltaic power based on a hybrid model[J]. Electric Power Systems Research, 2023, 216: 109035. DOI: 10.1016/j.epsr.2022.109035. [7] ZHOU H Y R, ZHOU Y H, HU J J, et al. LSTM-based energy management for electric vehicle charging in commercial-building prosumers[J]. Journal of Modern Power Systems and Clean Energy, 2021, 9(5): 1205-1216. DOI: 10.35833/MPCE.2020.000501. [8] FARHI N, KOHEN E, MAMANE H, et al. Prediction of wastewater treatment quality using LSTM neural network[J]. Environmental Technology & Innovation, 2021, 23: 101632. DOI: 10.1016/j.eti.2021.101632. [9] KHOSRAVI A, MACHADO L, NUNES R O. Time-series prediction of wind speed using machine learning algorithms: A case study Osorio wind farm, Brazil[J]. Applied Energy, 2018, 224: 550-566. DOI: 10.1016/j.apenergy.2018.05.043. [10] KULAMALA V K, KUMAR L, MOHAPATRA D P. Software fault prediction using LSSVM with different kernel functions[J]. Arabian Journal for Science and Engineering, 2021,46(9): 8655-8664. DOI: 10.1007/s13369-021-05643-2. [11] PEI S Q, QIN H, ZHANG Z D, et al. Wind speed prediction method based on Empirical Wavelet Transform and New Cell Update Long Short-Term Memory network[J]. Energy Conversion and Management, 2019, 196: 779-792. DOI: 10.1016/j.enconman.2019.06.041. [12] WANG Y S, LIAO W L, CHANG Y Q. Gated recurrent unit network-based short-term photovoltaic forecasting[J]. Energies, 2018, 11(8): 2163. DOI: 10.3390/en11082163. [13] DAMESHGHI A, REFAN M H. Combination of condition monitoring and prognosis systems based on current measurement and PSO-LS-SVM method for wind turbine DFIGs with rotor electrical asymmetry[J]. Energy Systems, 2021, 12(1): 203-232. DOI: 10.1007/s12667-019-00357-9. [14] 颜宏文,卢格宇.CEEMD-WT和CNN在短期风速预测中的应用研究[J].计算机工程与应用,2018,54(9): 224-230. DOI: 10.3778/j.issn.1002-8331.1612-0256. [15] 金子皓,向玲,李林春,等.基于完备集合经验模态分解的SE-BiGRU超短期风速预测[J].电力科学与工程,2023,39(1): 9-16. DOI: 10.3969/j.ISSN.1672-0792.2023.01.002. [16] XUE J K, SHEN B. Dung Beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7): 7305-7336. DOI: 10.1007/s11227-022-04959-6. [17] ROSLI S J, RAHIM H A, ABDUL RANI K N, et al. A hybrid modified method of the sine cosine algorithm using Latin hypercube sampling with the cuckoo search algorithm for optimization problems[J]. Electronics, 2020, 9(11): 1786. DOI: 10.3390/electronics9111786. [18] WANG Q Y, NAKASHIMA T, LAI C G, et al. Modified algorithms for fast construction of optimal Latin-hypercube design[J]. IEEE Access, 2020, 8: 191644-191658. DOI: 10.1109/ACCESS.2020.3032122. [19] LAYEB A. Tangent search algorithm for solving optimization problems[J]. Neural Computing and Applications, 2022, 34(11): 8853-8884. DOI: 10.1007/s00521-022-06908-z. [20] TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]//2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway, NJ: IEEE Press, 2011: 4144-4147. DOI: 10.1109/ICASSP.2011.5947265. [21] HUANG S C, ZHANG J, HE Y, et al. Short-term load forecasting based on the CEEMDAN-sample entropy-BPNN-transformer[J]. Energies, 2022, 15(10): 3659. DOI: 10.3390/en15103659. [22] 吉兴全,赵国航,叶平峰,等.基于QMD-HBiGRU的短期光伏功率预测方法[J].高电压技术,2024,50(9): 3850-3859. DOI: 10.13336/j.1003-6520.hve.20230333. [23] MORENO S R, DA SILVA R G, MARIANI V C, et al. Multi-step wind speed forecasting based on hybrid multi-stage decomposition model and long short-term memory neural network[J]. Energy Conversion and Management, 2020, 213: 112869. DOI: 10.1016/j.enconman.2020.112869. [24] RICHMAN J S, MOORMAN J R. Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology Heart and Circulatory Physiology, 2000, 278(6): H2039-H2049. DOI: 10.1152/ajpheart.2000.278.6.h2039. [25] LI X C, MA X F, XIAO F C, et al. Application of gated recurrent unit (GRU) neural network for smart batch production prediction[J]. Energies, 2020, 13(22): 6121. DOI: 10.3390/en13226121. [26] 邹智,吴铁洲,张晓星,等.基于贝叶斯优化CNN-BiGRU混合神经网络的短期负荷预测[J].高电压技术,2022,48(10): 3935-3945. DOI: 10.13336/j.1003-6520.hve.20220168. [27] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. DOI: 10.1016/j.advengsoft.2013.12.007. [28] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. DOI: 10.1016/j.advengsoft.2016.01.008. [29] MIRJALILI S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm[J]. Knowledge-based Systems, 2015, 89: 228-249. DOI: 10.1016/j.knosys.2015.07.006. [30] ASKARZADEH A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm[J]. Computers & Structures, 2016, 169: 1-12. DOI: 10.1016/j.compstruc.2016.03.001. [31] 刘睿,莫愿斌.增强型麻雀搜索算法及其工程优化应用[J].小型微型计算机系统,2023,44(3): 497-505. DOI: 10.20009/j.cnki.21-1106/TP.2021-0591. [32] HUANG N T, WU Y Y, CAI G W, et al. Short-term wind speed forecast with low loss of information based on feature generation of OSVD[J]. IEEE Access, 2019, 7: 81027-81046. DOI: 10.1109/access.2019.2922662. |
| [1] | TAN Quanwei, XUE Guijun, XIE Wenju. Short-Term Heating Load Prediction Model Based on VMD and RDC-Informer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 39-51. |
|