Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (4): 201-212.doi: 10.16088/j.issn.1001-6600.2024071901

• Ecology and Environmental Science Research • Previous Articles     Next Articles

Effects of Different Stand Densities on Soil Properties and Understory Vegetation in Chinese fir Plantation

ZUO Xiaodong1,2, WANG Xinxin3, XU Zuyuan1,2, ZHENG Hong4, CAO Guangqiu1,2, CAO Shijiang1,2*   

  1. 1. College of Forestry, Fujian Agriculture and Forestry University, Fuzhou Fujian 350002, China;
    2. National Forestry and Grassland Chinese fir Engineering Technology Research Center, Fuzhou Fujian 350002, China;
    3. Xiamen Ocean Vocational College, Xiamen Fujian 361100, China;
    4. Fujian Yangkou State Owned Forest Farm, Nanping Fujian 353200, China
  • Received:2024-07-19 Revised:2024-09-30 Online:2025-07-05 Published:2025-07-14

Abstract: In order to understand the effects of different stand retention densities on the soil characteristics of Cunninghamia lanceolate plantations, the soil water content, stoichiometric ratio, enzyme activity and understory vegetation diversity of Chinese fir plantations under different stand retention densities were studied in the experimental forests with different stand retention densities in Yangkou State Owned Forest Farm in Fujian Province. The results showed that: 1) There was no significant effect on the species richness index and Shannon-Wiener index in the understory vegetation diversity of Chinese fir plantations under different retention densities (P>0.05), but it had a great impact on Simpson index and Pielou evenness index. 2) There were significant differences in soil chemical properties among different stand retention densities (P<0.05), as stand retention density increased, total carbon content of soil increased first and then decreased. Soil total nitrogen decreased first and then increased. 3) The retention density of different stands had a significant effect on soil enzyme activity (P<0.05), among which,with the increase of stand retention density, the activities of polyphenol oxidase and acid phosphatase decreased in soil, while the activities of soil urease and soil sucrase increased. 4) Different stand retention densities had significant effects (P<0.05) on soil microbial dominant bacterial communities, and low stand density treatment could improve the structural diversity of soil microbial bacterial communities to some extent. In the correlation analysis between soil bacterial communities and physicochemical properties, TP, effective phosphorus content (AP) and soil dominant bacterial group (Actinobacteria) were highly significantly correlated (P<0.01). TC and TN were highly significantly correlated (P<0.01) with the dominant bacterial group (Zoopagomycota). Overall, low stand retention density is the best choice for planting Chinese fir plantations.

Key words: stand density, Cunninghamia lanceolata plantation, soil enzyme activity, vegetation diversity, soil microorganism

CLC Number:  S722.5
[1] HUANG L, ZENG Y, YANG S, et al. Transcriptome analysis of gene expression profiles reveals wood formation mechanisms in Chinese fir at different stand ages[J]. Heliyon, 2023, 9(4): 14861.
[2] 巢林,洪滔,林卓,等. 杉木人工林区域群体密度的变化规律[J]. 森林与环境学报, 2015, 35(2): 103-111.
[3] 王蕾,郭秋菊,艾训儒,等. 林分空间结构对天然林木本植物多样性的影响[J]. 森林与环境学报, 2024,44(1): 20-27.
[4] 汪星星,廖文海,孟芳芳,等. 林分密度对杉木人工林土壤理化性质和酶活性的影响[J]. 福建农林大学学报(自然科学版),2023, 52(3): 329-336.
[5] 沈国舫. 关于森林培育学教材建设的一些历史回顾[J]. 北京林业大学学报, 2002, 24(5/6): 280-283.
[6] CAO S, HU R Y, WU X L,et al. Two chemical mutagens modulate the seed germination, growth, and phenotypic characteristics of Chinese fir (Cunninghamia lanceolata)[J]. Journal of Forestry Research, 2021, 32(5): 2077-2085.
[7] 邵英男,刘延坤,李云红,等. 不同林分密度长白落叶松人工林土壤养分特征[J]. 中南林业科技大学学报, 2017, 37(9): 27-31.
[8] WANG H, SUN J J, DUAN A G,et al. Dendroclimatological analysis of Chinese fir using a long-term provenance trial in southern China[J]. Forests, 2022, 13(9): 1348.
[9] 马亚峰,侯银,张焕朝. 杨树不同林分密度和林分结构对土壤理化性质的影响[J]. 江苏农业科学, 2018,46(22): 131-136.
[10] 丁波,丁贵杰,赵熙州,等. 间伐对杉木人工林土壤酶活性及微生物的影响[J]. 林业科学研究, 2017, 30(6): 1059-1065.
[11] RAWLIK M, KASPROWICZ M, JAGODZIŃSKI A M. Differentiation of herb layer vascular flora in reclaimed areas depends on the species composition of forest stands[J]. Forest Ecology and Management, 2018,409: 541-551.
[12] 金锁,毕浩杰,刘佳,等. 林分密度对云顶山柏木人工林群落结构和物种多样性的影响[J]. 北京林业大学学报, 2020,42(1): 10-17.
[13] 王媚臻,毕浩杰,金锁,等. 林分密度对云顶山柏木人工林林下物种多样性和土壤理化性质的影响[J]. 生态学报, 2019, 39(3): 981-988.
[14] 肖华翠, 梁万栋, 李源钊,等. 土壤碳氮磷和酶化学计量特征对原始林转换的响应[J]. 森林与环境学报, 2024,44(3): 225-232.
[15] 汪星星,陈钢,左晓东,等. 光质对杉木幼苗叶片光合作用的影响[J]. 安徽农业大学学报, 2022,49(5): 716-723.
[16] 石媛媛,赵隽宇,宋贤冲,等. 广西人工林不同类型土壤肥力质量评价及环境驱动因子分析[J]. 广西师范大学学报(自然科学版), 2023,41(6): 192-201.
[17] 丁苏雅,马姜明,覃云斌,等. 生物炭对毛竹林土壤有机碳组分及碳库管理指数的影响[J]. 广西师范大学学报(自然科学版), 2024,42(1): 180-190.
[18] 李萌,陈永康,徐浩成,等. 不同间伐强度对南亚热带杉木人工林林下植物功能群的影响[J]. 生态学报, 2020,40(14): 4985-4993.
[19] 张辉,蔡一冰,胡亚楠,等. 目标树经营模式对杉木人工林生长及土壤肥力的短期影响[J]. 西北林学院学报, 2022, 37(1): 191-197.
[20] 杜振宇,葛忠强,梁燕,等. 林分密度对鲁中山地侧柏人工林林下植被的影响[J]. 中国农学通报, 2020, 36(22): 19-25.
[21] 张景普, 于立忠, 刘利芳, 等. 不同作业方式对落叶松人工林土壤养分及酶活性的影响[J]. 生态学杂志, 2016, 35(6): 1403-1410.
[22] 刘佩雯,覃云斌,莫慧婷,等. 凋落物及根系输入变化对喀斯特地区檵木土壤养分和胞外酶的影响[J]. 广西师范大学学报(自然科学版), 2023,41(6): 179-191.
[23] 汪星星,廖文海,左晓东,等. 密度调控对杉木人工林土壤理化性质的影响[J]. 东北林业大学学报, 2023, 51(1): 82-87.
[24] 谢秋丽,唐玉娟,苏厚人,等. 不同株龄田七根际土壤微生物和酶活性变化[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 149-156.
[1] LIU Ning, LIU Peiwen, HE Haoyong, LI Jiawei, DENG Yuting, WANG Lu, LÜ Jiaheng, LU Liqiu, HUANG Jianhua, MA Jiangming. Effects of Litter on Soil Microbial Biomass and Soil Enzyme Activities of Loropetalum chinense Community in Karst Area [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(1): 161-173.
[2] LIU Xuehui, XIE Yaqi, ZENG Yicheng, HU Lening. Effects of Interplanting Potatoes on Soil Enzyme Activity and Bacterialdiversity in Siraitia grosvenorii (Luo Han Guo) [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(1): 174-184.
[3] WANG Bo, QIN Fang, SHI Yancai, QIN Huizhen, DENG Lili, WEI Jiqing. Comparison of Microbial Functional Diversity Between Rhizosphere and Non-rhizosphere of Heteroplexis microcephala [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 237-246.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Ankang, CHEN Yanping, HU Ying, HUANG Ruizhang, QIN Yongbin. Fusing Boundary Interaction Information for Named Entity Recognition[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 1 -11 .
[2] LU Zhanyue, CHEN Yanping, YANG Weizhe, HUANG Ruizhang, QIN Yongbin. Relational Extraction Method Based on Mask Attention and Multi-feature Convolutional Networks[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 12 -22 .
[3] QI Dandan, WANG Changzheng, GUO Shaoru, YAN Zhichao, HU Zhiwei, SU Xuefeng, MA Boxiang, LI Shizhao, LI Ru. Topic-based Multi-view Entity Representation for Zero-Shot Entity Retrieval[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 23 -34 .
[4] HUANG Chuanyang, CHENG Can’er, LI Songwei, CHENG Hongdong, ZHANG Qiunan, ZHANG Zhao, SHAO Laipeng, TANG Jian, WANG Yongmei, GUO Kuikui, LU Hanglin, HU Junhui. Study on Temperature Sensing Characteristics of Long Period Fiber Grating with Coating Layer[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 35 -42 .
[5] TIAN Sheng, XIONG Chenyin, LONG Anyang. Point Cloud Classification Method of Urban Roads Based on Improved PointNet++[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 1 -14 .
[6] LI Zongxiao, ZHANG Jian, LUO Xinyue, ZHAO Yifei, LU Fei. Research on Arrival Trajectory Prediction Based on K-means and Adam-LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 15 -23 .
[7] SONG Mingkai, ZHU Chengjie. Research on Fault Location of Distribution Network Based on H-WOA-GWO and Region Correction Strategies[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 24 -37 .
[8] CHEN Yu, CHEN Lei, ZHANG Yi, ZHANG Zhirui. Wind Speed Prediction Model Based on QMD-LDBO-BiGRU[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 38 -57 .
[9] HAN Shuo, JIANG Linfeng, YANG Jianbin. Attention-based PINNs Method for Solving Saint-Venant Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 58 -68 .
[10] LI Zhixin, KUANG Wenlan. Fine-grained Image Classification Combining Adaptive Spatial Mutual Attention and Feature Pair Integration Discrimination[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 69 -82 .