Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (1): 174-184.doi: 10.16088/j.issn.1001-6600.2024050803

Previous Articles     Next Articles

Effects of Interplanting Potatoes on Soil Enzyme Activity and Bacterialdiversity in Siraitia grosvenorii (Luo Han Guo)

LIU Xuehui1,2, XIE Yaqi1,2, ZENG Yicheng1,2, HU Lening1,2*   

  1. 1. Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China
  • Received:2024-05-08 Revised:2024-06-17 Online:2025-01-05 Published:2025-02-07

Abstract: Soil continuous cropping obstacle in Siraitia grosvenorii (Luo Han Guo) farmland can be effectively alleviated, meanwhile, soil fertility also can be improved by interplanting with potatoes and application with organic matter. In this study, the effects of rice straw and its biochar on soil enzyme activity and bacterial diversity in Siraitia grosvenorii farmland were analyzed. Firstly, five treatments, ie., Siraitia grosvenorii only, Siraitia grosvenorii interplanting with potato, Siraitia grosvenorii interplanting with potato+rice straw, Siraitia grosvenorii interplanting with potato+rice straw biochar, and Siraitia grosvenorii interplanting with potato+rice straw and biochar were set up. And the effects of different treatments on soil enzyme activities and bacterial diversity are analyzed. The results showed that the activities of soil urease, sucrase, and catalase activities all could be improved by interplanting with potatoes in Siraitia grosvenorii farmland. However, in comparsion with Siraitia grosvenorii monoculture, soil phosphatase activity only was decreased with 0.75 mg·g-1·d-1. Meanwhile, the diversity and richness indexes, such as Chao1, ACE and Shannon were all increased by intercropping with potatoes 624.56, 643.5, and 0.47, respectively, but at the phylum level, the relative abundance of Proteobacteria and Actinobacteria all decreased in Siraitia grosvenorii interplanting with potato treatment. Under the intercropping mode, rice straw and its biochar returning to field increased the activities of soil urease, phosphatase, and sucrase, while decreased the activities of soil catalase by 30.89% to 69.29%. Furthermore, the bacterial diversity and richness, such as the index of Chao1, ACE, and Shannon were all improved by Siraitia grosvenorii interplanting with potato+rice straw, Siraitia grosvenorii interplanting with potato+rice straw biochar, and Siraitia grosvenorii interplanting with potato+rice straw and biochar treatment with 309.23, 465.20, and 0.46, respectively. Meanwhile, in comparison with the monoculture, the relative abundances of Proteobacteria in other four treatment were all increased. In conclusion, compared with monoculture, interplanting potato promoted the conversion of soil carbon components by increasing the activities of soil urease, sucrase, and catalase; under the interplanting mode, the urease, phosphatase, and sucrase activities of soil were increased by the mixed application of rice straw and its biochar, which helped to improve soil fertility and promote soil health.

Key words: soil enzyme activity, soil bacterial diversity, Siraitia grosvenorii farmlands, potato interplanting, rice straw/biochar, return to field

CLC Number:  S-3
[1] 陈燕蓉,张娜,陆艳,等.基于文献分析的罗汉果产业技术研究进展[J].广西科学,2024,31(1):9-16. DOI: 10.13656/j.cnki.gxkx.20240417.002.
[2] LI J, ZHOU L J, LIN W F. Calla lily intercropping in rubber tree plantations changes the nutrient content, microbial abundance, and enzyme activity of both rhizosphere and non-rhizosphere soil and calla lily growth[J]. Industrial Crops and Products, 2019, 132: 344-351. DOI: 10.1016/j.indcrop.2019.02.045.
[3] LIU C G, JIN Y Q, HU Y N, et al. Drivers of soil bacterial community structure and diversity in tropical agroforestry systems[J]. Agriculture, Ecosystems & Environment, 2019, 278: 24-34. DOI: 10.1016/j.agee.2019.03.015.
[4] 包松明.对两种马铃薯栽培基质中微生物群落结构和物种多样性的研究[D].兰州:兰州交通大学,2023. DOI: 10.27205/d.cnki.gltec.2023.000466.
[5] 芦美,赵吉霞,李永梅,等.玉米间作马铃薯对根际土壤酶活性及团聚体稳定性的影响[J].水土保持研究,2023,30(6):123-132. DOI: 10.13869/j.cnki.rswc.2023.06.008.
[6] 王娜,陆姗姗,马琨,等.宁夏南部山区马铃薯不同间作模式对根际土壤细菌多样性的影响[J].干旱区资源与环境,2016,30(12):193-198. DOI: 10.13448/j.cnki.jalre.2016.405.
[7] 覃潇敏,郑毅,汤利,等.玉米与马铃薯间作对根际微生物群落结构和多样性的影响[J].作物学报,2015,41(6):919-928. DOI: 10.3724/SP.J.1006.2015.00919.
[8] 张晓庆,王梓凡,参木友,等.中国农作物秸秆产量及综合利用现状分析[J].中国农业大学学报,2021,26(9):30-41. DOI: 10.11841/j.issn.1007-4333.2021.09.04.
[9] 高文慧,郭宗昊,高科,等.生物炭与炭基肥对大豆根际土壤细菌和真菌群落的影响[J].生态环境学报,2021,30(1):205-212. DOI: 10.16258/j.cnki.1674-5906.2021.01.024.
[10] 丁苏雅,马姜明,覃云斌,等.生物炭对毛竹林土壤有机碳组分及碳库管理指数的影响[J].广西师范大学学报(自然科学版),2024,42(1):180-190. DOI: 10.16088/j.issn.1001-6600.2023020701.
[11] 靳玉婷,李先藩,蔡影,等.秸秆还田配施化肥对稻-油轮作土壤酶活性及微生物群落结构的影响[J].环境科学,2021,42(8):3985-3996. DOI: 10.13227/j.hjkx.202012077.
[12] YANG S H, SUN X, DING J, et al. Effect of biochar addition on CO2 exchange in paddy fields under water-saving irrigation in Southeast China[J]. Journal of Environmental Management, 2020, 271: 111029. DOI: 10.1016/j.jenvman.2020.111029.
[13] 邬石根.秸秆还田对酸性水稻土培肥增产、土壤微生物生物量及酶活性的影响研究[J].土壤与作物,2017,6(4):270-276. DOI: 10.11689/j.issn.2095-2961.2017.04.005.
[14] 王理德,王方琳,郭春秀,等.土壤酶学硏究进展[J].土壤,2016,48(1):12-21. DOI: 10.13758/j.cnki.tr.2016.01.002.
[15] CHEN J H, LIU X Y, ZHENG J W, et al. Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China[J]. Applied Soil Ecology, 2013, 71: 33-44. DOI: 10.1016/j.apsoil.2013.05.003.
[16] WANG H F, LIU H L, YANG T H, et al. Mechanisms underlying the succession of plant rhizosphere microbial community structure and function in an alpine open-pit coal mining disturbance zone[J]. Journal of Environmental Management, 2023, 325(Pt A): 116571. DOI: 10.1016/j.jenvman.2022.116571.
[17] 陈芬,余高,孙约兵,等.汞矿区周边农田土壤微生物群落结构特征及其环境驱动因子[J].环境科学,2022,43(8):4342-4352. DOI: 10.13227/j.hjkx.202111245.
[18] 刘佩雯,覃云斌,莫慧婷,等.凋落物及根系输入变化对喀斯特地区檵木土壤养分和胞外酶的影响[J].广西师范大学学报(自然科学版),2023,41(6):179-191. DOI: 10.16088/j.issn.1001-6600.2023031303.
[19] 鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版社,2000.
[20] 姚忠凯.玉米秸秆和生物炭添加对颗粒态、矿物结合态有机碳激发效应的影响[D].重庆:重庆三峡学院,2023. DOI: 10.27883/d.cnki.gcqsx.2023.000041.
[21] 陈桂华,范芳,林芷君.三氯化六氨合钴浸提-分光光度法测定土壤阳离子交换量[J].理化检验:化学分册,2019,55(12):1448-1451. DOI: 10.11973/lhjy-hx201912016.
[22] HU L N, LI S L, LI K, et al. Effects of two types of straw biochar on the mineralization ofsoil organic carbon in farmland[J]. Sustainability, 2020, 12(24): 10586. DOI: 10.3390/SU122410586.
[23] 关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
[24] CHAO A, SHEN T J. Nonparametric prediction in species sampling[J]. Journal of Agricultural, Biological, and Environmental Statistics, 2004, 9(3): 253-269. DOI: 10.1198/108571104X3262.
[25] 史晓巍.甘肃引黄灌区枸杞豆科牧草间作节水增产效应研究[D].兰州:甘肃农业大学,2018.
[26] (HAN) WENG Z, VAN ZWIETEN L, SINGH B P, et al. Biochar built soil carbon over a decade by stabilizing rhizodeposits[J]. Nature Climate Change, 2017, 7(5): 371-376. DOI: 10.1038/nclimate3276.
[27] 石媛媛,赵隽宇,宋贤冲,等.广西人工林不同类型土壤肥力质量评价及环境驱动因子分析[J].广西师范大学学报(自然科学版),2023,41(6):192-201. DOI: 10.16088/j.issn.1001-6600.2022112301.
[28] 刘晓燕,梁强,庞天,等.甘蔗套种马铃薯机械化栽培对土壤微生物多样性及甘蔗养分吸收的影响[J].南方农业学报,2021,52(2):297-306. DOI: 10.3969/j.issn.2095-1191.2021.02.004.
[29] 王顶,李欢,伊文博,等.马铃薯间作对土壤微生物代谢功能多样性的促进效应及其氮素调控作用[J].中国生态农业学报(中英文),2022,30(7):1164-1173. DOI: 10.12357/cjea.20210604.
[30] XIA H, RIAZ M, LIU B, et al. Over two years study: peanut biochar promoted potassium availability by mediating the relationship between bacterial community and soil properties[J]. Applied Soil Ecology, 2022, 176: 104485. DOI: 10.1016/j.apsoil.2022.104485.
[31] 姜敏,汪霄,张润花,等.生物炭对土壤不同形态钾素含量的影响及机制初探[J].土壤通报,2016,47(6):1433-1441. DOI: 10.19336/j.cnki.trtb.2016.06.23.
[32] 文登鸿.秸秆生物炭施用对植烟土壤碳、氮形态及相关酶活性的影响研究[D].成都:四川农业大学,2017.
[33] CHEN Y L, XIN L, LIU J T, et al. Changes in bacterial community of soil induced by long-term straw returning[J]. Scientia Agricola, 2017, 74(5): 349-356. DOI: 10.1590/1678-992X-2016-0025.
[34] WROBEL-TOBISZEWSKA A, BOERSMA M, SARGISON J, et al. Nutrient changes in potting mix and Eucalyptus nitens leaf tissue under macadamia biochar amendments[J]. Journal of Forestry Research, 2018, 29(2): 383-393. DOI: 10.1007/s11676-017-0437-0.
[35] TIAN J H, KUANG X Z, TANG M T, et al. Biochar application under low phosphorus input promotes soil organic phosphorus mineralization by shifting bacterial phoD gene community composition[J]. Science of the Total Environment, 2021, 779: 146556. DOI: 10.1016/j.scitotenv.2021.146556.
[36] KAHURA M W, MIN H, KIM M S, et al. Assessing phosphorus availability in a high pH, biochar amended soil under inorganic and organic fertilization[J]. Ecology and Resilient Infrastructure, 2018, 5(1): 11-18. DOI: 10.17820/eri.2018.5.1.011.
[37] 宁川川,王建武,蔡昆争.有机肥对土壤肥力和土壤环境质量的影响研究进展[J].生态环境学报,2016,25(1):175-181. DOI: 10.16258/j.cnki.1674-5906.2016.01.026.
[38] ZHOU M Q, SUN C L, DAI B, et al. Intercropping system modulated soil-microbe interactions that enhanced the growth and quality of flue-cured tobacco by improving rhizospheric soil nutrients, microbial structure, and enzymatic activities[J]. Frontiers in Plant Science, 2023, 14: 1233464. DOI: 10.3389/fpls.2023.1233464.
[39] VEPSÄLÄINEN M, KUKKONEN S, VESTBERG M, et al. Application of soil enzyme activity test kit in a field experiment[J]. Soil Biology and Biochemistry, 2001, 33(12/13): 1665-1672. DOI: 10.1016/S0038-0717(01)00087-6.
[40] 尚杰,耿增超,陈心想,等.生物炭对土壤酶活性和糜子产量的影响[J].干旱地区农业研究,2015,33(2):146-151,158. DOI: 10.16302/j.cnki.1000-7601.2015.02.024.
[41] 方舰,张瑞玲,张子来.莲杆炭对土壤酶活性的影响[J].价值工程,2020,39(23):214-216. DOI: 10.14018/j.cnki.cn13-1085/n.2020.23.092.
[42] 张莉,任建新,韩国君,等.尿素混合生物质炭穴施对土壤氮含量及酶活性的影响[J].农业环境科学学报,2020,39(9):1974-1982. DOI: 10.11654/jaes.2020-0135.
[43] 包建平,袁根生,董方圆,等.生物质炭与秸秆施用对红壤有机碳组分和微生物活性的影响[J].土壤学报,2020,57(3):721-729. DOI: 10.11766/trxb201812150623.
[44] 伍玉鹏,彭其安,SHAABAN M,等.秸秆还田对土壤微生物影响的研究进展[J].中国农学通报,2014,30(29):175-183.
[45] OLESZCZUK P, JOSKO I, FUTA B, et al. Effect of pesticides on microorganisms, enzymatic activity and plant in biochar-amended soil[J]. Geoderma, 2014, 214/215: 10-18. DOI: 10.1016/j.geoderma.2013.10.010.
[46] PIETIKÄINEN J, KIIKKILÄ O, FRITZE H. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus[J]. Oikos, 2000, 89(2): 231-242. DOI: 10.1034/j.1600-0706.2000.890203.x.
[47] KENNEDY A C, SMITH K L. Soil microbial diversity and the sustainability of agricultural soils[J]. Plant and Soil, 1995, 170(1): 75-86. DOI: 10.1007/BF02183056.
[48] LI C J, DONG Y, LI H G, et al. Shift from complementarity to facilitation on P uptake by intercropped wheat neighboring with faba bean when available soil P is depleted[J]. Scientific Reports, 2016, 6(1): 18663. DOI: 10.1038/srep18663.
[49] 葛应兰,孙廷.马铃薯根际与非根际土壤微生物群落结构及多样性特征[J].生态环境学报,2020,29(1):141-148. DOI: 10.16258/j.cnki.1674-5906.2020.01.016.
[50] 伍文宪,张蕾,黄小琴,等.川西北高寒牧区不同人工草地对土壤微生物多样性影响[J].草业学报,2019,28(3):29-41. DOI: 10.11686/cyxb2018489.
[51] 愚广灵.长期围封条件下高寒草地土壤团聚体有机碳库稳定的微生物学机制[D].乌鲁木齐:新疆农业大学,2022. DOI: 10.27431/d.cnki.gxnyu.2022.000444.
[1] LIU Ning, LIU Peiwen, HE Haoyong, LI Jiawei, DENG Yuting, WANG Lu, LÜ Jiaheng, LU Liqiu, HUANG Jianhua, MA Jiangming. Effects of Litter on Soil Microbial Biomass and Soil Enzyme Activities of Loropetalum chinense Community in Karst Area [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(1): 161-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Jing, FENG Yuanliu, SHAO Jingwen. Research Progress on Multi-source Data Fusion Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 13 -27 .
[2] LIU Changping, SONG Shuxiang, JIANG Pinqun, CEN Mingcan. Differential Passive N-path Filter Based on Switched Capacitors[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 52 -60 .
[3] WANG Shuying, LU Yuxiang, DONG Shutong, CHEN Mo, KANG Bingya, JIANG Zhanglan, SU Chengyuan. Research Progress on the Propagation Process and Control Technology of ARGs in Wastewater[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 1 -15 .
[4] ZHONG Qiao, CHEN Shenglong, TANG Congcong. Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 16 -29 .
[5] ZHAI Siqi, CAI Wenjun, ZHU Su, LI Hanlong, SONG Hailiang, YANG Xiaoli, YANG Yuli. Dynamic Relationship Between Reverse Solute Flux and Membrane Fouling in Forward Osmosis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 30 -39 .
[6] ZHENG Guoquan, QIN Yongli, WANG Chenxiang, GE Shijia, WEN Qianmin, JIANG Yongrong. Stepwise Precipitation of Heavy Metals from Acid Mine Drainage and Mineral Formation in Sulfate-Reducing Anaerobic Baffled Reactor System[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 40 -52 .
[7] LIU Yang, ZHANG Yijie, ZHANG Yan, LI Ling, KONG Xiangming, LI Hong. Current Status and Trends of Algal Coagulation Elimination Technology in Drinking Water Treatment: a Visual Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 53 -66 .
[8] TIAN Sheng, CHEN Dong. A Joint Eco-driving Optimization Research for Connected Fuel Cell Hybrid Vehicle via Deep Reinforcement Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 67 -80 .
[9] CHEN Xiufeng, WANG Chengxin, ZHAO Fengyang, YANG Kai, GU Kexin. A Single Intersection Signal Control Method Based on Improved DQN Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 81 -88 .
[10] LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89 -100 .