Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (6): 215-225.doi: 10.16088/j.issn.1001-6600.2023102502

Previous Articles     Next Articles

Analysis of Potential Suitable Habitat Change of Pseudotsuga sinensis Based on MaxEnt Model

NONG Xiaoxia1,2★, YU Huaying1,2★, XIANG Yingying1,2, YANG Pangyu1,2*, ZHANG Qiwei1,2*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2023-10-25 Revised:2024-01-03 Online:2024-12-30 Published:2024-12-30

Abstract: Pseudotsuga sinensis is an endemic plant in China, which is not only a valuable economic tree but also an important component of the mountain ecosystem, and is National Level II Key Protected Species in China. However, in recent years, due to logging activities, its number has declined sharply, so it is urgent to carry out related research on its protection. In this study, MaxEnt model was used to simulate the potential distribution and spatial pattern changes of the suitable areas of P. sinensis under the two extreme greenhouse gas emission scenarios of SSP126 and SSP585 in the future, to explore the main environmental factors influencing its distribution and its dynamic changes, and to evaluate the future survival prospects of P. sinensis combined with the age structure of the main distribution areas so as to provide a theoretical basis for the protection and rational utilization of P. sinensis germplasm resources under the background of climate change in the future. The results indicated that: 1) Precipitation in the driest month, annual precipitation, elevation and the lowest temperature in the coldest month were the key factors affecting the distribution of P. sinensis, and their contribution rates were 40.8%, 24.7%, 15.8% and 7.2%, respectively; 2) At present, the suitable habitat areas of P. sinensis were mainly distributed in Taiwan and southwest China. The core distribution areas were concentrated in the alpine area of Yunnan-Guizhou Plateau; 3) In the future, under different scenarios and at different periods, the distribution of suitable areas of P. sinensis showed a trend of northward migration, and the area of suitable areas increasd slightly, but the distribution strip of the core high suitable area was fractured, showing a certain degree of fragmentation distribution. In addition, the suitable areas of most key protected populations remained unchanged, but the suitable areas of some populations were reduced. These populations are at potential risk of extinction and should be prioritized for protection.

Key words: Pseudotsuga sinensis, climate change, MaxEnt, potential habitat area, distribution pattern, age structure

CLC Number:  Q948
[1] WEI X X, YANG Z Y, LI Y, et al. Molecular phylogeny and biogeography of Pseudotsuga(Pinaceae): Insights into the floristic relationship between Taiwan and its adjacent areas[J]. Molecular Phylogenetics and Evolution, 2010, 55(3): 776-785. DOI: 10.1016/j.ympev.2010.03.007.
[2] 李楠. 黄杉属植物地理学的研究[J]. 植物研究, 1993(4): 404-411.
[3] 冯倩. 黄杉[J]. 百科知识, 2013(12): 39-40.
[4] HUANG T, YING S H, LI J Y, et al. Phytochemical and biological studies on rare and endangered plants endemic to China. Part XV. Structurally diverse diterpenoids and sesquiterpenoids from the vulnerable conifer Pseudotsuga sinensis[J]. Phytochemistry, 2020, 169: 112184. DOI: 10.1016/j.phytochem.2019.112184.
[5] 罗荣飞. 宣威市黄杉资源现状及保护利用建议[J]. 现代农业科技, 2022(17): 135-137, 142. DOI: 10.3969/j.issn.1007-5739.2022.17.034.
[6] KEHIMKAR I. The IUCN red list of threatened speciesTM [M].[S.l.] :[s.n.] , 2020.
[7] RUMPF S B, GRAVEY M, BRÖNNIMANN O, et al. From white to green: Snow cover loss and increased vegetation productivity in the European Alps[J]. Science, 2022, 376(6597): 1119-1122. DOI: 10.1126/science.abn6697.
[8] YE X Z, ZHANG M Z, YANG Q Y, et al. Prediction of suitable distribution of a critically endangered plant Glyptostrobus pensilis[J]. Forests, 2022, 13(2): 257. DOI: 10.3390/f13020257.
[9] 易进海, 张国林, 李伯刚. 黄杉化学成分的研究[J]. 药学学报, 2002,37(5): 352-354. DOI: 10.3321/j.issn:0513-4870.2002.05.008.
[10] 李玲丽, 徐耀粘, 周天阳, 等. 湖南八大公山黄杉种群结构和群落特征研究[J]. 植物科学学报, 2021, 39(2): 111-120. DOI: 10.11913/PSJ.2095-0837.2021.20111.
[11] 李艳, 鲁顺保, 刘晓燕, 等. 江西三清山华东黄杉种群遗传多样性研究[J]. 江西农业大学学报, 2009, 31(4): 685-689. DOI: 10.3969/j.issn.1000-2286.2009.04.020.
[12] 李继品, 岳彩荣, 孟翠萍, 等. 基于GIS的黄杉生长适宜性评价研究:以滇东北为例[J]. 林业调查规划, 2023, 48(4): 13-23. DOI: 10.3969/j.issn.1671-3168.2023.04.002.
[13] 李望军, 冯图, 周瑞伍, 等. 基于MaxEnt模型的贵州省天然黄杉林的潜在分布预测研究[J]. 西部林业科学, 2019, 48(3): 47-52. DOI: 10.16473/j.cnki.xblykx1972.2019.03.008.
[14] MEROW C, SMITH M J, SILANDER J A, Jr. A practical guide to MaxEnt for modeling species’distributions: what it does, and why inputs and settings matter[J]. Ecography, 2013, 36(10): 1058-1069. DOI: 10.1111/j.1600-0587.2013.07872.x.
[15] RATHORE M K, SHARMA L K. Efficacy of species distribution models (SDMs) for ecological realms to ascertain biological conservation and practices[J]. Biodiversity and Conservation, 2023, 32(10): 3053-3087. DOI: 10.1007/s10531-023-02648-1.
[16] 庞丽芳, 庾太林. 基于MaxEnt模型的黄腹角雉潜在生境预测[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 123-133. DOI: 10.16088/j.issn.1001-6600.2022092101.
[17] RIAHI K, VAN VUUREN D P, KRIEGLER E, et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview[J]. Global Environmental Change, 2017, 42: 153-168. DOI: 10.1016/j.gloenvcha.2016.05.009.
[18] DORMANN C F. Effects of incorporating spatial autocorrelation into the analysis of species distribution data[J]. Global Ecology and Biogeography, 2007, 16(2): 129-138. DOI: 10.1111/j.1466-8238.2006.00279.x.
[19] FICK S E, HIJMANS R J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas[J]. International Journal of Climatology, 2017, 37(12): 4302-4315. DOI: 10.1002/joc.5086.
[20] TANG X G, YUAN Y D, LI X M, et al. Maximum entropy modeling to predict the impact of climate change on pine wilt disease in China[J]. Frontiers in Plant Science, 2021, 12: 652500. DOI: 10.3389/fpls.2021.652500.
[21] FLETCHER R J, Jr., HEFLEY T J, ROBERTSON E P, et al. A practical guide for combining data to model species distributions[J]. Ecology, 2019, 100(6): e02710. DOI: 10.1002/ecy.2710.
[22] 张殷波, 刘彦岚, 秦浩, 等. 气候变化条件下山西翅果油树适宜分布区的空间迁移预测[J]. 应用生态学报, 2019, 30(2): 496-502. DOI: 10.13287/j.1001-9332.201902.040.
[23] 何斌, 张萍, 李青, 等. 珍稀濒危植物黄杉种群结构与空间分布格局[J]. 热带亚热带植物学报, 2022, 30(4): 461-471. DOI: 10.11926/jtsb.4507.
[24] 李明刚, 谢双喜. 黔北喀斯特山地黄杉林群落及种群结构研究[J]. 天津农业科学, 2015, 21(9): 150-153, 166. DOI: 10.3969/j.issn.1006-6500.2015.09.035.
[25] 文剑然. 中国西南地区孑遗植物黄杉的森林类型、群落结构与更新动态[D]. 昆明: 云南大学, 2022.
[26] 陈文红, 税玉民, 王文, 等. 云南易门翠柏和黄杉的群落调查及保护[J]. 云南植物研究, 2001,23(2): 189-200. DOI: 10.3969/j.issn.2095-0845.2001.02.009.
[27] 孟广涛, 柴勇, 方向京, 等. 滇东北黄杉种群数量动态的初步研究[J]. 西北林学院学报, 2008,23(6): 54-59.
[28] 徐期瑚, 喻勋林. 湖南阳明山黄杉群落特征的初步研究[J]. 福建林业科技, 2010, 37(2): 10-14. DOI: 10.3969/j.issn.1002-7351.2010.02.003.
[29] 庞鑫. 珍贵观赏植物西昌黄杉种群特征及保护利用策略研究[D]. 成都: 成都理工大学, 2023.
[30] 熊斌梅. 七姊妹山自然保护区黄杉林群落学特征研究[D]. 武汉: 湖北大学, 2017.
[31] 朱华. 论中国海南岛的生物地理起源[J]. 植物科学学报, 2020, 38(6): 839-843. DOI: 10.11913/PSJ.2095-0837.2020.60839.
[32] 张茂钦. 中国的花旗松:黄杉[J]. 云南林业, 1982(3): 29-30.
[33] 徐宏范, 张合理, 尚华明, 等. 自然分布北界的大巴山黄杉树轮气候响应分析[J]. 生态与农村环境学报, 2021, 37(6): 761-768. DOI: 10.19741/j.issn.1673-4831.2020.0928.
[34] 何斌, 李青, 陈群利, 等. 黔西北黄杉群落物种多样性的海拔梯度格局[J]. 生态环境学报, 2021, 30(6): 1111-1120. DOI: 10.16258/j.cnki.1674-5906.2021.06.001.
[35] SIGDEL S R, WANG Y F, CAMARERO J J, et al. Moisture-mediated responsiveness of treeline shifts to global warming in the Himalayas[J]. Global Change Biology, 2018, 24(11): 5549-5559. DOI: 10.1111/gcb.14428.
[36] PAULI H, GOTTFRIED M, REITER K, et al. Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994—2004) at the GLORIA master site Schrankogel, Tyrol, Austria[J]. Global Change Biology, 2007, 13(1): 147-156. DOI: 10.1111/j.1365-2486.2006.01282.x.
[37] 黄晓远, 李谢辉. 基于CMIP6的西南暴雨洪涝灾害风险未来预估[J]. 应用气象学报, 2022, 33(2): 231-243.
[38] YANG S L, DING Z L, LI Y Y, et al. Warming-induced northwestward migration of the East Asian monsoon rain belt from the Last Glacial Maximum to the mid-Holocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(43): 13178-13183. DOI: 10.1073/pnas.1504688112.
[39] ALLEN C D, MACALADY A K, CHENCHOUNI H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. Forest Ecology and Management, 2010, 259(4): 660-684. DOI: 10.1016/j.foreco.2009.09.001.
[40] 胡文彬. 贵州湄潭黄杉生态系统保护性评价及保护构想[J]. 福建林业科技, 2015, 42(1): 173-176. DOI: 10.13428/j.cnki.fjlk.2015.01.037.
[41] DAVIS E L, BROWN R, DANIELS L, et al. Regional variability in the response of alpine treelines to climate change[J]. Climatic Change, 2020, 162(3): 1365-1384. DOI: 10.1007/s10584-020-02743-0.
[42] THOMAS Z A, MOONEY S, CADD H, et al. Late Holocene climate anomaly concurrent with fire activity and ecosystem shifts in the eastern Australian highlands[J]. Science of the Total Environment, 2022, 802: 149542. DOI: 10.1016/j.scitotenv.2021.149542.
[43] MA T X, LIANG Y, LI Z Y, et al. Age-related patterns and climatic driving factors of drought-induced forest mortality in Northeast China[J]. Agricultural and Forest Meteorology, 2023, 332: 109360. DOI: 10.1016/j.agrformet.2023.109360.
[44] LIU Y Y, WANG A Y, AN Y N, et al. Hydraulics play an important role in causing low growth rate and dieback of aging Pinus sylvestris var. mongolica trees in plantations of Northeast China[J]. Plant, Cell & Environment, 2018, 41(7): 1500-1511. DOI: 10.1111/pce.13160.
[45] ZHANG Y J, MEINZER F C, HAO G Y, et al. Size-dependent mortality in a Neotropical savanna tree: the role of height-related adjustments in hydraulic architecture and carbon allocation[J]. Plant Cell and Environment, 2009, 32(10): 1456-1466. DOI: 10.1111/j.1365-3040.2009.02012.x.
[1] WANG Yanru, YAO Wei, CHEN Xinyue, WANG Guohai, ZHOU Qihai. Prediction of Potential Suitable Areas of Solanum torvum Based on MaxEnt and ArcGIS [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 205-214.
[2] PANG Lifang, YU Tailin. Prediction of Potential Habitat for Tragopan caboti Based on MaxEnt Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 123-133.
[3] DUAN Jiahuan, XU Zhenghui, ZHANG Xinmin, LI Ting, YIN Xiaodan, LI Zhaoyi. Distribution Patterns of Ant Species in Northern Part of Western Sichuan Plateau [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 134-142.
[4] JIA Yanhong, SU Xiaoqian, LI Heran. Characteristic Analysis of Climate Change in Nanning from 1991 to 2020 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 190-200.
[5] ZHANG Xiaoli, CHEN Zening, WU Zhengjun. Analysis of the Evolution of Research Hotspots on Lizards and Climate Change: Based on the Web of Science Database [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 332-341.
[6] ZHU Jing, LIU Ding, WANG Shan, HUANG Zuoshui, LIANG Jianhong. Impacts of Soil Nutrients and Stoichiometry on Microbial Carbon Use Efficiency [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 376-387.
[7] LI Chengen, PAN Xiaoying, WANG Meihan, SHI Jianhua. Research on China’s Grain Output Based on Interval Data Measurement [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 206-215.
[8] SONG Zunrong, QIN Jiashuang, LI Mingjin, MA Jiangming, ZHONG Fengyue, YANG Zhangqi, YAN Peidong. Study on Root Biomass of Pinus massoniana Plantations in Subtropical China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 149-156.
[9] LI Xuanjing, LI Shengqiang, WANG Guohai, SHI Zepan, ZHOU Qihai. Diversity and Spatial Distribution of Birds in Guangxi Maoershan National Nature Reserve:Based on Line Transect Surveys and Camera Traps [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 143-151.
[10] PENG Guoqing, GUO Yili, WEI Sujuan, CHEN Hailing, HE Yunlin, TANG Shaoqing. Age Structure and Spatial Pattern of Camellia flavida in Nonggang [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(3): 138-143.
[11] LI Jianhong, MENG Xinyuan, ZHAI Luxin, WANG Yue. Analysis of the Trend of Extreme Continuous Precipitation underClimate Change Condition in Guangxi,China, from 1951 to 2006 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 187-196.
[12] MA Jiang-ming, LIU Shi-rong, LIU Xing-liang. Root Biomass in the Restoration Process of Subalpine Dark Coniferous Forests in Western Sichuan,China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(3): 56-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHU Gege, HUANG Anshu, QIN Yingying. Analysis of Development Trend of International Mangrove Research Based on Web of Science[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 1 -12 .
[2] HE Jing, FENG Yuanliu, SHAO Jingwen. Research Progress on Multi-source Data Fusion Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 13 -27 .
[3] WANG Shuying, LU Yuxiang, DONG Shutong, CHEN Mo, KANG Bingya, JIANG Zhanglan, SU Chengyuan. Research Progress on the Propagation Process and Control Technology of ARGs in Wastewater[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 1 -15 .
[4] ZHONG Qiao, CHEN Shenglong, TANG Congcong. Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 16 -29 .
[5] ZHAI Siqi, CAI Wenjun, ZHU Su, LI Hanlong, SONG Hailiang, YANG Xiaoli, YANG Yuli. Dynamic Relationship Between Reverse Solute Flux and Membrane Fouling in Forward Osmosis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 30 -39 .
[6] ZHENG Guoquan, QIN Yongli, WANG Chenxiang, GE Shijia, WEN Qianmin, JIANG Yongrong. Stepwise Precipitation of Heavy Metals from Acid Mine Drainage and Mineral Formation in Sulfate-Reducing Anaerobic Baffled Reactor System[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 40 -52 .
[7] LIU Yang, ZHANG Yijie, ZHANG Yan, LI Ling, KONG Xiangming, LI Hong. Current Status and Trends of Algal Coagulation Elimination Technology in Drinking Water Treatment: a Visual Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 53 -66 .
[8] TIAN Sheng, CHEN Dong. A Joint Eco-driving Optimization Research for Connected Fuel Cell Hybrid Vehicle via Deep Reinforcement Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 67 -80 .
[9] CHEN Xiufeng, WANG Chengxin, ZHAO Fengyang, YANG Kai, GU Kexin. A Single Intersection Signal Control Method Based on Improved DQN Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 81 -88 .
[10] LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89 -100 .