Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (6): 205-214.doi: 10.16088/j.issn.1001-6600.2023110303

Previous Articles     Next Articles

Prediction of Potential Suitable Areas of Solanum torvum Based on MaxEnt and ArcGIS

WANG Yanru1,2,3, YAO Wei1,2,3, CHEN Xinyue4, WANG Guohai4*, ZHOU Qihai1,2,3*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. Guangxi Key Laboratory of Rare and Endangered Animal Ecology (Guangxi Normal University), Guilin Guangxi 541006, China;
    3. The Chongzuo White-headed Langur Field Observation and Research Station of Guangxi, Chongzuo Guangxi 532204, China;
    4. College of Chemistry and Bioengineering, Guangxi Minzu Normal University, Chongzuo Guangxi 532200, China
  • Received:2023-11-03 Revised:2024-01-11 Online:2024-12-30 Published:2024-12-30

Abstract: Predicting the range of suitable areas for plants under different climatic conditions is beneficial for understanding the geographical distribution characteristics of this plants and its response strategies to climate change. The potential distribution area of Solanum torvum in China under present and three future Representative Concentration Pathways scenarios (RCP2.6, RCP4.5 and RCP8.5) in 2050s and 2070s were simulated by the MaxEnt model (3.4.4), and then using ArcGIS (10.8) for visualization and analysis of its potential spatial patterns and environmental influencing factors in China. The AUC value for the reconstructed MaxEnt was 0.962, indicating excellent prediction accuracy of the model. Temperature annual range (bio7), mean temperature of the coldest quarter (bio11), annual precipitation (bio12), and precipitation of the driest quarter (bio17) were the dominant environmental factors that affected the distribution of S. torvum. The potentially suitable areas for the current distribution of S. torvum cover 79.14×104 km2, with a high suitability area 17.86×104 km2. The high suitability areas were mainly located in Guangxi and Guangdong provinces. There were significant differences in the suitable area of S. torvum between different periods, and its suitable area generally showed an expanding trend in future climate scenario. However, compared with the potential suitable area in the current climate, its suitable areas in Taiwan decreased 0.05×104 km2 under the 2050s RCP4.5 period. Therefore, climate warming was beneficial for the geographical expansion of S. torvum.

Key words: Solanum torvum, MaxEnt, suitable area prediction, climate change

CLC Number:  Q948
[1] KONCKI N G, ARONSON M F J. Invasion risk in a warmer world: Modeling range expansion and habitat preferences of three nonnative aquatic invasive plants[J]. Invasive Plant Science and Management, 2015, 8(4): 436-449. DOI: 10.1614/IPSM-D-15-00020.1.
[2] LIPPMANN R, BABBEN S, MENGER A, et al. Development of wild and cultivated plants under global warming conditions[J]. Current Biology, 2019, 29(24): R1326-R1338. DOI: 10.1016/j.cub.2019.10.016.
[3] 吴晓萌, 叶冬梅, 白玉娥, 等. 基于MaxEnt模型的中国白杄分布格局及未来变化[J]. 西北植物学报, 2022, 42(1): 162-172. DOI: 10.7606/j.issn.1000-4025.2022.01.0162.
[4] GRAHAM E M, RESIDE A E, ATKINSON I, et al. Climate change and biodiversity in Australia: a systematic modelling approach to nationwide species distributions[J]. Australasian Journal of Environmental Management, 2019, 26(2): 112-123. DOI: 10.1080/14486563.2019.1599742.
[5] NGUYEN T T, GLIOTTONE I, PHAM M P, et al. Current and future habitat suitability map of Cunninghamia konishii Hayata under climate change in northern Vietnam[J]. European Journal of Ecology, 2021, 7: 1-17.
[6] 洪楚楚, 王百竹, 白建华, 等. 气候变化情景下中国荒漠锦鸡儿潜在适生区的时空变化分析[J]. 西北植物学报, 2023, 43(5): 856-866. DOI: 10.7606/j.issn.1000-4025.2023.05.0856.
[7] PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3/4): 231-259. DOI: 10.1016/j.ecolmodel.2005.03.026.
[8] 文国卫, 黄秋良, 吕增伟, 等. 气候变化情境下木荷潜在地理分布及生态适宜性分析[J]. 生态学报, 2023, 43(16): 6617-6626. DOI: 10.5846/stxb202201130121.
[9] 王绮, 樊保国, 赵光华. 气候变化下毛榛在中国的潜在适生区预测[J]. 生态学杂志, 2020, 39(11): 3774-3784. DOI: 10.13292/j.1000-4890.202011.014.
[10] ESTES L D, BRADLEY B A, BEUKES H, et al. Comparing mechanistic and empirical model projections of crop suitability and productivity: implications for ecological forecasting[J]. Global Ecology and Biogeography, 2013, 22(8): 1007-1018. DOI: 10.1111/geb.12034.
[11] ABOLMAALI S M R, TARKESH M, BASHARI H. MaxEnt modeling for predicting suitable habitats and identifying the effects of climate change on a threatened species, Daphne mucronata, in central Iran[J]. Ecological Informatics, 2018, 43: 116-123. DOI: 10.1016/j.ecoinf.2017.10.002.
[12] 庞丽芳, 庾太林. 基于MaxEnt 模型的黄腹角雉潜在生境预测[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 123-133. DOI: 10.16088/j.issn.1001-6600.2022092101.
[13] 王国峥, 耿其芳, 肖孟阳, 等. 基于4种生态位模型的金钱松潜在适生区预测[J]. 生态学报, 2020, 40(17): 6096-6104. DOI: 10.5846/stxb201907021390.
[14] ARSHAD F, WAHEED M, FATIMA K, et al. Predicting the suitable current and future potential distribution of the native endangered tree Tecomella undulata (Sm.) Seem. in Pakistan[J]. Sustainability, 2022, 14(12): 7215. DOI: 10.3390/su14127215.
[15] 李璇, 李垚, 方炎明. 基于优化的MaxEnt 模型预测白栎在中国的潜在分布区[J]. 林业科学, 2018, 54(8): 153-164. DOI: 10.11707/j.1001-7488.20180817.
[16] 袁川, 谭露, 徐亮, 等. 地果花粉供应格局成因和适生区分析[J]. 生态学报, 2021, 41(6): 2384-2397. DOI: 10.5846/stxb202005181263.
[17] DARKWAH W K, KOOMSON D A, MIWORNUNYUIE N, et al. Review: phytochemistry and medicinal properties of Solanum torvum fruits[J]. All Life, 2020, 13(1): 498-506. DOI: 10.1080/26895293.2020.1817799.
[18] 李栋, 孙亮亮, 罗晓梅, 等. 水茄组织培养技术体系的建立[J]. 山西农业大学学报(自然科学版), 2019, 39(2): 69-74. DOI: 10.13842/j.cnki.issn1671-8151.201810063.
[19] 陆园园, 罗建光, 孔令义. 水茄的化学成分[J]. 中国天然药物, 2011, 9(1): 30-32. DOI: 10.3724/SP.J.1009.2011.00030.
[20] 许良政, 罗来辉, 李坤新, 等. 野生蔬菜水茄种子发芽特性的研究[J]. 种子, 2009, 28(8): 45-47. DOI: 10.16590/j.cnki.1001-4705.2009.08.083.
[21] 李诺, 廖仲英, 许良政, 等. 不同成熟度野生水茄果实的种子萌发差异研究[J]. 种子, 2018, 37(9): 65-68. DOI: 10.16590/j.cnki.1001-4705.2018.09.065.
[22] 赵金鹏, 王闫利, 陆兴利, 等. 软枣猕猴桃在中国的适生区分析及对未来气候变化的响应[J]. 中国生态农业学报(中英文), 2020, 28(10): 1523-1532. DOI: 10.13930/j.cnki.cjea.200244.
[23] PEARSON R G, RAXWORTHY C J, NAKAMURA M, et al. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar[J]. Journal of Biogeography, 2007, 34(1): 102-117. DOI: 10.1111/j.1365-2699.2006.01594.x.
[24] 刘攀峰, 王璐, 杜庆鑫, 等. 杜仲在我国的潜在适生区估计及其生态特征分析[J]. 生态学报, 2020, 40(16): 5674-5684. DOI: 10.5846/stxb201907091450.
[25] XIE C P, HUANG B Y, JIM C Y, et al. Predicting differential habitat suitability of Rhodomyrtus tomentosa under current and future climate scenarios in China[J]. Forest Ecology and Management, 2021, 501: 119696. DOI: 10.1016/j.foreco.2021.119696.
[26] 张晓玮, 蒋玉梅, 毕阳, 等. 基于MaxEnt 模型的中国沙棘潜在适宜分布区分析[J]. 生态学报, 2022, 42(4): 1420-1428. DOI: 10.5846/stxb202101260269.
[27] DAWSON T P, JACKSON S T, HOUSE J I, et al. Beyond predictions: Biodiversity conservation in a changing climate[J]. Science, 2011, 332(6025): 53-58. DOI: 10.1126/science.1200303.
[28] 刘婷, 曹家豪, 齐瑞, 等. 基于GIS和MaxEnt模型分析气候变化背景下紫果云杉的潜在分布区[J]. 西北植物学报, 2022, 42(3): 481-491. DOI: 10.7606/j.issn.1000-4025.2022.03.0481.
[29] YANG X Q, KUSHWAHA S P S, SARAN S, et al. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills[J]. Ecological Engineering, 2013, 51: 83-87. DOI: 10.1016/j.ecoleng.2012.12.004.
[30] 曹雪萍, 王婧如, 鲁松松, 等. 气候变化情景下基于最大熵模型的青海云杉潜在分布格局模拟[J]. 生态学报, 2019, 39(14): 5232-5240. DOI: 10.5846/stxb201809151999.
[31] WANG G H, XIE C P, WEI L J, et al. Predicting suitable habitats for China’s endangered plant Handeliodendron bodinieri (H. Lév.) Rehder[J]. Diversity, 2023, 15(10): 1033. DOI: 10.3390/d15101033.
[32] KHANUM R, MUMTAZ A S, KUMAR S. Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling[J]. Acta Oecologica, 2013, 49: 23-31. DOI: 10.1016/j.actao.2013.02.007.
[33] 王东升, 赵伟, 程蓓蓓, 等. 基于MaxEnt模型的中国山楂潜在适生区[J]. 林业科学, 2022, 58(7): 43-50. DOI: 10.11707/j.1001-7488.20220705.
[34] XU D P, ZHUO Z H, WANG R L, et al. Modeling the distribution of Zanthoxylum armatum in China with MaxEnt modeling[J]. Global Ecology and Conservation, 2019, 19: e00691. DOI: 10.1016/j.gecco.2019.e00691.
[35] KHODOROVA N V, BOITEL-CONTI M. The role of temperature in the growth and flowering of geophytes[J]. Plants, 2013, 2(4): 699-711. DOI: 10.3390/plants2040699.
[36] ATKINSON C J, BRENNAN R M, JONES H G. Declining chilling and its impact on temperate perennial crops[J]. Environmental and Experimental Botany, 2013, 91: 48-62. DOI: 10.1016/j.envexpbot.2013.02.004.
[37] LADWIG L M, RATAJCZAK Z R, OCHELTREE T W, et al. Beyond Arctic and alpine: the influence of winter climate on temperate ecosystems[J]. Ecology, 2016, 97(2): 372-382. DOI: 10.1809/15-0153.1.
[38] GUAN L L, YANG Y X, JIANG P, et al. Potential distribution of Blumea balsamifera in China using MaxEnt and the ex situ conservation based on its effective components and fresh leaf yield[J]. Environmental Science and Pollution Research, 2022, 29(29): 44003-44019. DOI: 10.1007/s11356-022-18953-1.
[39] MEIER E S, LISCHKE H, SCHMATZ D R, et al. Climate, competition and connectivity affect future migration and ranges of European trees[J]. Global Ecology and Biogeography, 2012, 21(2): 164-178. DOI: 10.1111/j.1466-8238.2011.00669.x.
[1] NONG Xiaoxia, YU Huaying, XIANG Yingying, YANG Pangyu, ZHANG Qiwei. Analysis of Potential Suitable Habitat Change of Pseudotsuga sinensis Based on MaxEnt Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 215-225.
[2] PANG Lifang, YU Tailin. Prediction of Potential Habitat for Tragopan caboti Based on MaxEnt Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 123-133.
[3] JIA Yanhong, SU Xiaoqian, LI Heran. Characteristic Analysis of Climate Change in Nanning from 1991 to 2020 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 190-200.
[4] ZHANG Xiaoli, CHEN Zening, WU Zhengjun. Analysis of the Evolution of Research Hotspots on Lizards and Climate Change: Based on the Web of Science Database [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 332-341.
[5] ZHU Jing, LIU Ding, WANG Shan, HUANG Zuoshui, LIANG Jianhong. Impacts of Soil Nutrients and Stoichiometry on Microbial Carbon Use Efficiency [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 376-387.
[6] LI Chengen, PAN Xiaoying, WANG Meihan, SHI Jianhua. Research on China’s Grain Output Based on Interval Data Measurement [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 206-215.
[7] LI Jianhong, MENG Xinyuan, ZHAI Luxin, WANG Yue. Analysis of the Trend of Extreme Continuous Precipitation underClimate Change Condition in Guangxi,China, from 1951 to 2006 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 187-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHU Gege, HUANG Anshu, QIN Yingying. Analysis of Development Trend of International Mangrove Research Based on Web of Science[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 1 -12 .
[2] HE Jing, FENG Yuanliu, SHAO Jingwen. Research Progress on Multi-source Data Fusion Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 13 -27 .
[3] WANG Shuying, LU Yuxiang, DONG Shutong, CHEN Mo, KANG Bingya, JIANG Zhanglan, SU Chengyuan. Research Progress on the Propagation Process and Control Technology of ARGs in Wastewater[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 1 -15 .
[4] ZHONG Qiao, CHEN Shenglong, TANG Congcong. Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 16 -29 .
[5] ZHAI Siqi, CAI Wenjun, ZHU Su, LI Hanlong, SONG Hailiang, YANG Xiaoli, YANG Yuli. Dynamic Relationship Between Reverse Solute Flux and Membrane Fouling in Forward Osmosis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 30 -39 .
[6] ZHENG Guoquan, QIN Yongli, WANG Chenxiang, GE Shijia, WEN Qianmin, JIANG Yongrong. Stepwise Precipitation of Heavy Metals from Acid Mine Drainage and Mineral Formation in Sulfate-Reducing Anaerobic Baffled Reactor System[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 40 -52 .
[7] LIU Yang, ZHANG Yijie, ZHANG Yan, LI Ling, KONG Xiangming, LI Hong. Current Status and Trends of Algal Coagulation Elimination Technology in Drinking Water Treatment: a Visual Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 53 -66 .
[8] TIAN Sheng, CHEN Dong. A Joint Eco-driving Optimization Research for Connected Fuel Cell Hybrid Vehicle via Deep Reinforcement Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 67 -80 .
[9] CHEN Xiufeng, WANG Chengxin, ZHAO Fengyang, YANG Kai, GU Kexin. A Single Intersection Signal Control Method Based on Improved DQN Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 81 -88 .
[10] LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89 -100 .