Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (3): 121-130.doi: 10.16088/j.issn.1001-6600.2023100805

Previous Articles     Next Articles

Multi-primary-node Byzantine Fault-Tolerant Consensus Mechanism Based on Raft

LI Li*, LI Haoze, LI Tao   

  1. College of Information and Computer Engineering, Northeast Forestry University, Harbin Heilongjiang 150040, China
  • Received:2023-10-08 Revised:2023-12-16 Published:2024-05-31

Abstract: In order to solve the problems of high communication complexity and low consensus efficiency of practical Byzantine fault-tolerant (PBFT) consensus mechanism in the consortium chain under the condition of increasing number of nodes in the blockchain network, a multi-primary-node Byzantine fault-tolerant consensus mechanism based on Raft IMRBFT is proposed. Firstly, the Maglev consensus hash algorithm is used to evenly group the nodes of the blockchain network, and the consensus process is divided into two parts: out-of-group consensus and intra-group consensus. The leader node is first selected in the group, and the node is divided into three levels through the credit mechanism: trusted node, ordinary node and untrusted node. Together with the voting mechanism, it reduces the probability of malicious nodes becoming leader nodes, and forms a committee with other group leader nodes, and the committee selects multiple primary nodes with the highest credit value through the external credit value mechanism to conduct PBFT consensus outside the group. On the basis of Raft consensus, intra-group consensus introduces supervision nodes and relay nodes to further improve security and consensus efficiency and reduce the evil behavior of malicious nodes. Finally, the experimental results show that the communication overhead of IMRBFT increases linearly, the traffic volume is 41.6% of PBFT, the throughput is 4.2 times that of PBFT, and the consensus delay is reduced by 76.4%. With the increase of nodes, the optimization is more obvious, which fully meets the requirements of small communication complexity, high throughput, short consensus delay, and high security and consensus efficiency of large-scale blockchain networks.

Key words: blockchain, consensus mechanism, node grouping, credit mechanisms, Byzantine tolerance, Raft algorithm

CLC Number:  TP311.13
[1] NAKAMOTO S. Bitcoin: a peer-to-peer electronic cash system[EB/OL]. (2008-10-31)[2023-10-08]. https://nakamotoinstitute.org/bitcoin/.
[2] 邵奇峰, 金澈清, 张召, 等. 区块链技术: 架构及进展[J]. 计算机学报, 2018, 41(5): 969-988. DOI: 10.11897/SP.J.1016.2018.00969.
[3] 林小驰, 胡叶倩雯. 关于区块链技术的研究综述[J]. 金融市场研究, 2016(2): 97-109.
[4] DASHKEVICH N, COUNSELL S, DESTEFANIS G. Blockchain application for central banks: a systematic mapping study[J]. IEEE Access, 2020, 8: 139918-139952. DOI: 10.1109/ACCESS.2020.3012295.
[5] MALIBARI N A. A survey on blockchain-based applications in education[C]// 2020 7th International Conference on Computing for Sustainable Global Development (INDIACom). Piscataway, NJ: IEEE, 2020: 266-270. DOI: 10.23919/INDIACom49435.2020.9083714.
[6] TARIQ N, QAMAR A, ASIM M, et al. Blockchain and smart healthcare security: a survey[J]. Procedia Computer Science, 2020, 175: 615-620. DOI: 10.1016/j.procs.2020.07.089.
[7] 汪传雷, 万一荻, 秦琴, 等. 基于区块链的供应链物流信息生态圈模型[J]. 情报理论与实践, 2017, 40(7): 115-121. DOI: 10.16353/j.cnki.1000-7490.2017.07.021.
[8] 蔡晓晴, 邓尧, 张亮, 等. 区块链原理及其核心技术[J]. 计算机学报, 2021, 44(1): 84-131. DOI: 10.11897/SP.J.1016.2021.00084.
[9] 张亮, 刘百祥, 张如意, 等. 区块链技术综述[J]. 计算机工程, 2019, 45(5): 1-12. DOI: 10.19678/j.issn.1000-3428.0053554.
[10] 曾诗钦, 霍如, 黄韬, 等. 区块链技术研究综述:原理、进展与应用[J]. 通信学报, 2020, 41(1): 134-151. DOI: 10.11959/j.issn.1000-436x.2020027.
[11] BUTERIN V. A next-generation smart contract and decentralized application platform[EB/OL]. (2018-05-31)[2023-10- 08]. https://resources.platform.coop/resources/a-next-generation-smart-contract-and-decentralized-application-platform/.
[12] YANG F, ZHOU W, WU Q Q, et al. Delegated proof of stake with downgrade: a secure and efficient blockchain consensus algorithm with downgrade mechanism[J]. IEEE Access, 2019, 7: 118541-118555. DOI: 10.1109/ACCESS.2019.2935149.
[13] CASTRO M, LISKOV B. Practical byzantine fault tolerance[C]// OSDI'99: Proceedings of the Third Symposium on Operating Systems Design and Implementation. Berkeley, CA: USENIX Association, 1999: 173-186.
[14] ONGARO D, OUSTERHOUT J. In search of an understandable consensus algorithm[C]// USENIX ATC'14: Proceedings of the 2014 USENIX Conference on USENIX Annual Technical Conference. Berkeley, CA: USENIX Association, 2014: 305-320.
[15] WANG Y H, CAI S B, LIN C L, et al. Study of blockchains's consensus mechanism based on credit[J]. IEEE Access, 2019, 7: 10224-10231. DOI: 10.1109/ACCESS.2019.2891065.
[16] 包振山, 王凯旋, 张文博. 基于树形拓扑网络的实用拜占庭容错共识算法[J]. 应用科学学报, 2020, 38(1): 34-50. DOI: 10.3969/j.issn.0255-8297.2020.01.003.
[17] 陈子豪, 李强. 基于K-medoids的改进PBFT共识机制[J]. 计算机科学, 2019, 46(12): 101-107. DOI: 10.11896/jsjkx.181002014.
[18] CHEN J H, ZHANG X, SHANGGUAN P F. Improved PBFT algorithm based on reputation and voting mechanism[J]. Journal of Physics: Conference Series, 2020, 1486(3): 032023. DOI: 10.1088/1742-6596/1486/3/032023.
[19] 黄保华, 屈锡, 郑慧颖, 等.一种基于信用的拜占庭容错共识算法[J]. 信息网络安全, 2022, 22(4): 86-92. DOI: 10.3969/j.issn.1671-1122.2022.04.010.
[20] WANG Y, SONG Z, CHENG T. Improvement research of PBFT consensus algorithm based on credit[C]// Blockchain and Trustworthy Systems. Singapore: Springer Nature Singapore Pte Ltd., 2020: 47-59. DOI: 10.1007/978-981-15-2777-7_4.
[21] 王森, 李志淮, 贾志鹏. 主节点随机选取的改进PBFT共识算法[J]. 计算机应用与软件, 2022, 39(10): 299-306. DOI: 10.3969/j.issn.1000-386x.2022.10.044.
[22] EISENBUD D E, YI C, CONTAVALLI C, et al. Maglev: a fast and reliable software network load balancer[C]// 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 16). Berkeley, CA: USENIX Association, 2016: 523-535.
[23] BONEH D, GENTRY C, LYNN B, et al. Aggregate and verifiably encrypted signatures from bilinear maps[C]// Advances in Cryptology-EUROCRYPT 2003: LNCS Volume 2656. Berlin: Springer, 2003: 416-432. DOI: 10.1007/3-540-39200-9_26.
[24] YOO H K, YIM J C, KIM S. The blockchain for domain based static sharding[C]// 2018 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE International Conference on Big Data Science and Engineering (TrustCom/BigDataSE). Los Alamitos, CA: IEEE Computer Society, 2018: 1689-1692. DOI: 10.1109/TrustCom/BigDataSE.2018.00252.
[25] LUU L, NARAYANAN V, ZHENG C D, et al. A secure sharding protocol for open blockchains[C]// CCS'16: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York, NY: Association for Computing Machinery, 2016: 17-30. DOI: 10.1145/2976749.2978389.
[26] KARGER D, LEHMAN E, LEIGHTON T, et al. Consistent hashing and random trees: distributed caching protocols for relieving hot spots on the World Wide Web[C]// STOC'97: Proceedings of the twenty-ninth annual ACM symposium on Theory of computing. New York, NY: Association for Computing Machinery, 1997: 654-663. DOI: 10.1145/258533.258660.
[27] LAMPING J, VEACH E. A fast, minimal memory, consistent hash algorithm[EB/OL]. (2014-06-09)[2023-10-08]. https://arxiv.org/abs/1406.2294. DOI: 10.48550/arXiv.1406.2294.
[28] 吴宇森, 刘伊然, 吴沅赛, 等. 基于分组Raft机制的PBFT共识算法改进方案设计[J]. 电子技术与软件工程, 2021(24): 254-258.
[1] WANG Fan, WANG Can, GAN Youchun, HE Xuhui, ZHANG Xuefei, ZHANG Yu, YU Yazhou. Multi-distributed Energy Storage Trading Mechanism Based on On-chain and Off-chain Collaboration [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 39-53.
[2] YU Feng, MENG Linghui, PENG Jiahui, LI Xianxian, QU Bin. A Blockchain-Based IoT Data Security Transaction Scheme [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 84-95.
[3] BAI Shangwang, MA Xiaoqian, GAO Gaimei, LIU Chunxia, DANG Weichao. Byzantine Fault Tolerant Consensus Algorithm Based on Verifiable Random Function and BLS Signature [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 194-201.
[4] WANG Han, WANG Xu’an, ZHOU Neng, LIU Yudong. Blockchain-based Public Verifiable Scheme for Sharing Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 1-7.
[5] CHEN Xiong, ZHU Yu, FENG Ke, YU Tongwei. Identity Authentication of Power System Safetyand Stability Control Terminals Based on Blockchain [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 8-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!