Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (5): 76-85.doi: 10.16088/j.issn.1001-6600.2023021501
Previous Articles Next Articles
WU Zixian, CHENG Jun*, FU Jianling, ZHOU Xinwen, XIE Jialong, NING Quan
[1] 马静,高翔,李益楠,等. 考虑连锁故障的多工况电力系统功角稳定性分析[J]. 中国电机工程学报, 2016, 36(14):3837-3844. [2] BENJELLOUN K, BOUKAS E K. Mean square stochastic stability of linear time-delay system with Markovian jumping parameters[J]. IEEE Transactions on Automatic Control, 1998, 43(10): 1456-1460. [3] BOUKAS E K, LIU Z K, SHI P. Delay-dependent stability and output feedback stabilization of Markov jump system with time-dely[J]. IEE Proceedings: Control Theory and Applications, 2002, 149(5): 379-386. [4] 赵旭东,曾庆双. 模型相关时变时滞马尔可夫跳变系统低保守稳定性[J]. 控制理论与应用,2010, 27(5): 653-657. [5] 刘宏亮,段广仁. 跳变时滞随机系统的鲁棒保性能控制[J]. 系统工程与电子技术, 2008, 30(7): 1312-1316. [6] WANG J, RU T T, SHEN H, et al. Finite-time L2-L∞ synchronization for semi-Markov jump inertial neural networks using sampled data[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(1): 163-173. [7] CALLEGARO D, LEVORATO M. Optimal edge computing for infrastructure-assisted UAV systems[J]. IEEE Transactions on Vehicular Technology, 2021, 70(2): 1782-1792. [8] 戴江涛. 半马尔科夫切换拓扑下的多智能体系统一致性[D]. 大连: 大连理工大学, 2018. [9] 王加强,孙永辉,翟苏巍,等. 基于Markov理论的含风电电力系统随机建模及小干扰稳定性分析[J]. 电网技术,2019, 43(2): 646-654. [10] 吉一纛. 网络化半马尔可夫跳变系统控制及应用[D]. 北京:北京科技大学,2022. [11] 张传科. 时滞电力系统的小扰动稳定分析与负荷频率控制[D]. 长沙: 中南大学, 2013. [12] 肖伸平,张天,唐军,等. 基于PI控制的时滞电力系统稳定性分析[J]. 电网技术, 2020,44(10): 3949-3954. [13] SUN S X, DAI X, XI R P, et al. Reachable set estimation for Itô stochastic semi-Markovian jump systems against multiple time delays[J]. International Journal of Control, Automation and Systems, 2022,20(9):2857-2867. [14] 季博威,张笑,严沈,等. 基于事件触发和欺骗攻击的电力系统负荷频率控制[J]. 辽宁石油化工大学学报,2022, 42(4): 87-96. [15] 冉华军,肖鹏. 离散Markovian跳变系统模态依赖非脆弱H∞控制[J]. 三峡大学学报(自然科学版), 2014, 36(6): 98-102. [16] 刘豹,唐万生. 现代控制理论[M].3版. 北京: 机械工业出版社, 2006. [17] PARK P G, KO J W,JEONG C. Reciprocally convex approach to stability of systems with time-varying delays[J]. Automatica, 2011, 47(1): 235-238. [18] 黄卫红. 矩阵Schur补的性质及其应用[D]. 南京:南京信息工程大学, 2008. [19] MUTHUKUMAR P, SUBRAMANIAN K. Stability criteria for Markovian jump neural networks with mode-dependent additive time-varying delays via quadratic convex combination[J]. Neurocomputing, 2016,205(12): 75-83. [20] 李艳辉,冀广超,张国旭. 事件触发机制下离散分布时滞Markov跳变网络化系统故障检测[J]. 东北石油大学学报, 2022, 46(1): 113-122, 12. [21] 潘昌忠,徐城涛,周少武. 基于线性矩阵不等式的Acrobot鲁棒镇定控制[J]. 计算技术与自动化,2016, 35(4): 6-10. [22] NAIR H M, SUJATHA C.Vehicle tip-over prevention using gain-scheduled state-dependent Riccati equation-based anti-rollover controller[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235(2/3):807-828. [23] ZHOU X H, GU Z, YANG F. Resilient event-triggered output feedback control for load frequency control systems subject to cyber attacks[J]. IEEE Access, 2019, 7: 58951-58958. [24] 张云峰,王建宏. 变量带误差闭环系统参数辨识的最优输入信号设计[J].南昌大学学报(工科版), 2022, 44(3):297-302. |
[1] | CHEN Xiong, ZHU Yu, FENG Ke, YU Tongwei. Identity Authentication of Power System Safetyand Stability Control Terminals Based on Blockchain [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 8-18. |
|