Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (5): 49-60.doi: 10.16088/j.issn.1001-6600.2023021303

Previous Articles     Next Articles

Anomaly Detection of Multidimensional QAR Data Based on Improved LSTM

OUYANG Shuxin1, WANG Mingjun1, RONG Chuitian1*, SUN Huabo2   

  1. 1. School of Computer Science and Technology, Tiangong University, Tianjin 300387, China;
    2. Engineering and Technical Research Center of Civil Aviation Safety Analysis and Prevention, China Academy of Civil Aviation Science and Technology, Beijing 100028, China
  • Received:2023-02-13 Revised:2023-04-04 Published:2023-10-09

Abstract: QAR(quick access recorder) data retains a large number of flight parameters of the aircraft, which makes it possible to study the flight safety of the aircraft and ensure the flight quality. Aiming at the requirement of multi-dimensional QAR data security detection, an effective and interpretable multi-dimensional time series anomaly detection model based on convolution VAE and multi-head self-attention-LSTM is proposed. The new model is able to capture both spatial and temporal information between multiple time series data channels, and perform interpretable reconstruction of sequential patterns to detect all types of anomalies. In the experiment, compared with the existing methods such as iForest, LSTM, VAE, LSTM-VAE, and USAD on real QAR datasets, the results show that the F1-scores of this model in three different stages of anomaly detection reach 0.891 2, 0.942 4, and 0.953 7, respectively, which are superior to other models and can accurately detect anomalies in multidimensional QAR data.

Key words: anomaly detection, QAR data, multivariate time series, neural networks

CLC Number:  V328; TP391
[1] 周长春, 蒋澜, 赵新宇. 通用航空飞行品质监控运行管理[J]. 中国民航飞行学院学报, 2019, 30(1): 39-42. DOI: 10.3969/j.issn.1009-4288.2019.01.010.
[2] 俞力玲. 中国民航飞行品质监控回顾与展望[J]. 中国民用航空, 2012(8): 51-53.
[3] 杨绎煊. 基于QAR数据的航班运行安全风险研究[D]. 天津: 中国民航大学, 2016.
[4] 程震. 多维时间序列聚类方法及其应用研究[D]. 天津: 中国民航大学, 2018.
[5] VAHDAT A, KAUTZ J. NVAE: a deep hierarchical variational autoencoder[C]// Advances in Neural Information Processing Systems 33 (NeurIPS 2020). Red Hook, NY: Curran Associates Inc., 2020: 19667-19679.
[6] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. DOI:10.1162/neco.1997.9.8.1735.
[7] HUNDMAN K, CONSTANTINOU V, LAPORTE C, et al. Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding[C]// KDD’18: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, NY: Association for Computing Machinery, 2018: 387-395. DOI: 10.1145/3219819.3219845.
[8] 毛秀华, 吴健. 卡尔曼滤波算法研究[J]. 舰船电子对抗, 2017, 40(3): 64-68. DOI: 10.16426/j.cnki.jcdzdk.2017.03.015.
[9] 张鹏, 杨涛, 刘亚楠, 等. 基于CNN-LSTM的QAR数据特征提取与预测[J]. 计算机应用研究, 2019, 36(10): 2958-2961. DOI: 10.19734/j.issn.1001-3695.2018.04.0214.
[10] MEMARZADEH M, MATTHEWS B, AVREKH I. Unsupervised anomaly detection in flight data using convolutional variational auto-encoder[J]. Aerospace, 2020, 7(8): 115. DOI: 10.3390/aerospace7080115.
[11] CHEN R Q, SHI G H, ZHAO W L, et al. Sequential VAE-LSTM for anomaly detection on time series[EB/OL]. (2019-10-10)[2023-02-13]. https://arxiv.org/abs/1910.03818v2. DOI: 10.48550/arXiv.1910.03818.
[12] FU Q, WANG H W. Aeroengine state prediction based on generative adversarial networks and deep learning[J]. International Journal of Computer Aided Engineering and Technology, 2021, 15(4): 486-500. DOI: 10.1504/IJCAET.2021.118468.
[13] 王红, 郇秀霞, 王宏伟. QAR数据仓库中的数据预处理方法研究[C]// 2008年国际应用统计学术研讨会论文集. 烟台: 中国现场统计研究会, 2008: 1-3.
[14] JIANG K, ZHANG H, KARIMI H R, et al. Simultaneous input and state estimation for integrated motor-transmission systems in a controller area network environment via an adaptive unscented Kalman filter[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(4): 1570-1579. DOI: 10.1109/TSMC.2018.2795340.
[15] DAI L, LIN T, LIU C, et al. SDFVAE: static and dynamic factorized VAE for anomaly detection of multivariate CDN KPIs[C]// WWW’21: Proceedings of the Web Conference 2021. New York, NY: Association for Computing Machinery, 2021: 3076-3086. DOI: 10.1145/3442381.3450013.
[16] YAN H S, SUN J Z, ZUO H F. Anomaly detection based on multivariate data for the aircraft hydraulic system[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2021, 235(5): 593-605. DOI: 10.1177/0959651820954577.
[17] 杨丽, 吴雨茜, 王俊丽, 等. 循环神经网络研究综述[J]. 计算机应用, 2018, 38(S2): 1-6, 26.
[18] MALHOTRA P, RAMAKRISHNAN A, ANAND G, et al. LSTM-based encoder-decoder for multi-sensor anomaly detection[EB/OL]. (2016-07-11)[2023-02-13]. https://arxiv.org/abs/1607.00148. DOI: 10.48550/arXiv.1607.00148.
[19] 赵和松, 王圆圆, 孙爱民. 一种基于ARIMA模型与3σ准则的取水异常检测方法[J]. 水利信息化, 2022(1): 35-41. DOI: 10.19364/j.1674-9405.2022.01.008.
[20] 田雨, 田青青, 乔雨, 等. 一种基于RF-Adaboost模型在异常水情数据中的诊断与插补方法: CN202210116677.6[P]. 2022-05-13.
[21] 于萌, 匡思薇, 杨悦, 等. 上市公司异常财务指标的传导路径研究[J]. 经贸实践, 2017(6): 21-22.
[22] LIU F T, TING K M, ZHOU Z H. Isolation forest[C]// 2008 Eighth IEEE International Conference on Data Mining. Los Alamitos, CA: IEEE Computer Society, 2008: 413-422. DOI: 10.1109/ICDM.2008.17.
[23] XU H W, CHEN W X, ZHAO N W, et al. Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in Web applications[C]// WWW’18: Proceedings of the 2018 World Wide Web Conference. Geneva: International World Wide Web Conferences Steering Committee, 2018: 187-196. DOI: 10.1145/3178876.3185996.
[24] AUDIBERT J, MICHIARDI P, GUYARD F, et al. USAD: unsupervised anomaly detection on multivariate time series[C]// KDD’20: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, NY: Association for Computing Machinery, 2020: 3395-3404. DOI: 10.1145/3394486.3403392.
[25] PARK D, HOSHI Y, KEMP C C. A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 1544-1551. DOI: 10.1109/LRA.2018.2801475.
[1] YANG Shuozhen, ZHANG Long, WANG Jianhua, ZHANG Hengyuan. Review of Sound Event Detection [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 1-18.
[2] HAO Yaru, DONG Li, XU Ke, LI Xianxian. Interpretability of Pre-trained Language Models: A Survey [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 59-71.
[3] LIN Peiqun, HE Huohua, LIN Xukun. Multi-scale Prediction of Expressways' Arrival Volume of Large and Medium-sized Trucks Based on System Relevance [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 15-26.
[4] CHEN Wenkang, LU Shenglian, LIU Binghao, LI Guo, LIU Xiaoyu, CHEN Ming. Real-time Citrus Recognition under Orchard Environment by Improved YOLOv4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 134-146.
[5] LUO Lan, ZHOU Nan, SI Jie. New Delay Partition Method for Robust Stability of Uncertain Cellular Neural Networks with Time-Varying Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 45-52.
[6] WU Wenya,CHEN Yufeng,XU Jin’an,ZHANG Yujie. High-level Semantic Attention-based Convolutional Neural Networks for Chinese Relation Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 32-41.
[7] LIN Yue, LIU Tingzhang, HUANG Lirong, XI Xiaoye, PAN Jian. Anomalous State Detection of Power Transformer Basedon Bidirectional KL Distance Clustering Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 20-26.
[8] LI Peng. Load Localization of Optical Fiber Smart Structures Based on Probabilistic Neural Networks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 223-226.
[9] ZHAO Hui-wei, LI Wen-hua, FENG Chun-hua, LUO Xiao-shu. Periodic Oscillation Analysis for a Recurrent Neural NetworksModel with Time Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 29-34.
[10] PAN Feng-yan, FENG Chun-hua. Anti-periodic Solutions for Cellular Neural Networks with Impulses and Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(1): 23-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DONG Shulong, MA Jiangming, XIN Wenjie. Research Progress and Trend of Landscape Visual Evaluation —Knowledge Atlas Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 1 -13 .
[2] GUO Jialiang, JIN Ting. Semantic Enhancement-Based Multimodal Sentiment Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 14 -25 .
[3] WU Zhengqing, CAO Hui, LIU Baokai. Chinese Fake Review Detection Based on Attention Convolutional Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 26 -36 .
[4] LIANG Zhengyou, CAI Junmin, SUN Yu, CHEN Lei. Point Cloud Classification Based on Residual Dynamic Graph Convolution and Feature Enhancement[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 37 -48 .
[5] LI Yiyang, ZENG Caibin, HUANG Zaitang. Random Attractors for Chemostat Model with Wall Attachment Driven by Fractional Brownian Motion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 61 -68 .
[6] LI Pengbo, LI Yongxiang. Radial Symmetric Solutions of p-Laplace Equations on Exterior Domains[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 69 -75 .
[7] WU Zixian, CHENG Jun, FU Jianling, ZHOU Xinwen, XIE Jialong, NING Quan. Analysis of PI-based Event-Triggered Control Design for Semi-Markovian Power Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 76 -85 .
[8] CHENG Lei, YAN Puxuan, DU Bohao, YE Si, ZOU Huahong. Thermal Stability and Dielectric Relaxation of MOF-2 Synthesized in Aqueous Phase[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 86 -95 .
[9] LIU Meiyu, ZHANG Jinyan, ZHOU Tongxi, LIAO Guangfeng, YANG Xinzhou, LU Rumei. A New C21 Steroidal Glycoside from Gymnema sylvestre and Its Hypoglycemic Activity[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 96 -104 .
[10] WANG Wei, DENG Hua, HU Lening, LI Yang. Adsorption Performance of Red Mud-Sodium Alginate Hydrogel on Pb(Ⅱ) in Water[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 105 -115 .