Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (3): 242-254.doi: 10.16088/j.issn.1001-6600.2022040403

Previous Articles    

Effects of Cr(Ⅵ) Concentration on the Performance and Microecology of MFC-Granular Sludge Coupling System

QIN Ronghua1,2, SU Chengyuan1,2*, LU Xinya2, CHEN Zhengpeng2, ZHOU Yijie2, XIAN Yunchuan2   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. School of Environment and Resources, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2022-04-04 Revised:2022-05-05 Online:2023-05-25 Published:2023-06-01

Abstract: Heavy metal pollution in water environment cannot be ignored, especially the pollution phenomenon of hexavalent chromium (Cr(Ⅵ)). In order to explore a new idea for efficient treatment of Cr(Ⅵ)-containing wastewater, a microbial fuel cell (MFC)-granular sludge coupling system was established. The effects of the Cr(Ⅵ) concentration on the performance and microecology of MFC-granular sludge coupling system were investigated. When the Cr(Ⅵ) content reached 80 mg/L in the influent, the chemical oxygen demand (COD) degradation and biological reduction efficiency of Cr(Ⅵ) by the system were 92.71% and 99.70%, respectively. In the electrochemical performance analysis, cyclic voltammetry (CV) showed an obvious reduction peak. Meanwhile, the electrochemical impedance spectroscopy (EIS) illustrated that with increasing Cr(Ⅵ) concentrations, the charge transfer resistance gradually decreased. When the influent Cr(Ⅵ) concentration increased to 100 mg/L, the lowest activity of coenzyme F420 was 0.026 2±0.000 2 mmol/g; in addition, the activity of INT-ETS sharply decreased to 5.20±0.23 μg/(mg·h). The morphology of Cr(Ⅵ) after biological reduction of chromate was determined by X-ray photoelectron spectroscopy (XPS), the binding energy of the characteristic peaks demonstrated that was mainly represented by Cr2O3 and Cr(OH)3. High-throughput sequencing analysis illustrated that the dominant microbial flora were Chloroflexi and Proteobacteria. When the concentration of Cr(Ⅵ) increased to 100 mg/L, the dominant microbial community structure were transformed from Methanothrix and Methanobacterium to Geobacter and Syntrophobacter at genus level, the maximum relative abundance of each bacteria were 21.24%, 4.28%, 5.60% and 6.22%, respectively. It was indicated that increasing the concentration of Cr(Ⅵ) would change the microbial community structure of the MFC-granular sludge coupling system, and Cr(Ⅵ) was reduced through the association mechanism between microbial communities.

Key words: chromate reduction, MFC-granular sludge coupling system, electrochemical performance, microbial communities

CLC Number:  X703.1
[1] UDDIN M J, JEONG Y K, LEE W. Microbial fuel cells for bioelectricity generation through reduction of hexavalent chromium in wastewater: a review[J]. International Journal of Hydrogen Energy, 2021, 46(20): 11458-11481. DOI: 10.1016/j.ijhydene.2020.06.134.
[2] JIANG B, XIN S S, LIU Y J, et al. The role of thiocyanate in enhancing the process of sulfite reducing Cr(Ⅵ) by inhibiting the formation of reactive oxygen species[J]. Journal of Hazardous Materials, 2018, 343: 1-9. DOI: 10.1016/j.jhazmat.2017.09.015.
[3] RENU K, CHAKRABORTY R, MYAKALA H, et al. Molecular mechanism of heavy metals (lead, chromium, arsenic, mercury, nickel and cadmium)-induced hepatotoxicity: a review[J]. Chemosphere, 2021, 271: 129735. DOI: 10.1016/j.chemosphere.2021.129735.
[4] RAJAPAKSHA A U, SELVASEMBIAN R, ASHIQ A, et al. A systematic review on adsorptive removal of hexavalent chromium from aqueous solutions: recent advances[J]. Science of the Total Environment, 2022, 809: 152055. DOI: 10.1016/j.scitotenv.2021.152055.
[5] ROWBOTHAM A L, LEVY L S, SHUKER L K. Chromium in the environment: an evaluation of exposure of the UK general population and possible adverse health effects[J]. Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 2000, 3(3): 145-178. DOI: 10.1080/10937400050045255.
[6] LI M, ZHOU S Q, XU Y T, et al. Simultaneous Cr(Ⅵ) reduction and bioelectricity generation in a dual chamber microbial fuel cell[J]. Chemical Engineering Journal, 2018, 334: 1621-1629. DOI: 10.1016/j.cej.2017.11.144.
[7] MU C X, WANG L, WANG L. Removal of Cr(Ⅵ) and electricity production by constructed wetland combined with microbial fuel cell (CW-MFC): influence of filler media[J]. Journal of Cleaner Production, 2021, 320: 128860. DOI: 10.1016/j.jclepro.2021.128860.
[8] LAI C Y, WEN L L, SHI L D, et al. Selenate and nitrate bioreductions using methane as the electron donor in a membrane biofilm reactor[J]. Environmental Science & Technology, 2017, 50(18): 10179-10186. DOI: 10.1021/acs.est.6b02807.
[9] LUO J H, WU M X, LIU J Y, et al. Microbial chromate reduction coupled with anaerobic oxidation of methane in a membrane biofilm reactor[J]. Environment International, 2019, 130: 104926. DOI: 10.1016/j.envint.2019.104926.
[10] ZHU C Y, WANG J F, LI Q S, et al. Integration of CW-MFC and anaerobic granular sludge to explore the intensified ammonification-nitrification-denitrification processes for nitrogen removal[J]. Chemosphere, 2021, 278: 130428. DOI: 10.1016/j.chemosphere.2021.130428.
[11] DENG Q J, SU C Y, LU X Y, et al. Performance and functional microbial communities of denitrification process of a novel MFC-granular sludge coupling system[J]. Bioresource Technology, 2020, 306: 123173. DOI: 10.1016/j.biortech.2020.123173.
[12] DONG B, XIA Z H, SUN J, et al. The inhibitory impacts of nano-graphene oxide on methane production from waste activated sludge in anaerobic digestion[J]. Science of the Total Environment, 2019, 646: 1376-1384. DOI: 10.1016/j.scitotenv.2018.07.424.
[13] 尹军, 谭学军, 任南琪. 用TTC与INT-电子传递体系活性表征重金属对污泥活性的影响[J]. 环境科学, 2005, 26(1): 56-62. DOI: 10.13227/j.hjkx.2005.01.013.
[14] 唐琳钦, 王安柳, 宿程远, 等. 不同氮源对好氧颗粒污泥理化特性及微生物群落影响[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 144-153. DOI: 10.16088/j.issn.1001-6600.2020061301.
[15] CHENG L, LI X C, JIANG R X, et al. Effects of Cr(Ⅵ) on the performance and kinetics of the activated sludge process[J]. Bioresource Technology, 2011, 102: 797-804. DOI: 10.1016/j.biortech.2010.08.116.
[16] XU W, ZHANG H M, LI G, et al. A urine/Cr(Ⅵ) fuel cell-electrical power from processing heavy metal and human urine[J]. Journal of Electroanalytical Chemistry, 2016, 764: 38-44. DOI: 10.1016/j.jelechem.2016.01.013.
[17] LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel cells: methodology and technology[J]. Environmental Science & Technology, 2006, 40: 5181-5192. DOI: 10.1021/es0605016.
[18] ZHAO S, CHEN Z J, KHAN A, et al. Elevated Cr(Ⅵ) reduction in a biocathode microbial fuel cell without acclimatization inversion based on strain Corynebacterium vitaeruminis LZU47-1[J]. International Journal of Hydrogen Energy, 2021, 46: 3193-3203. DOI: 10.1016/j.ijhydene.2020.05.254.
[19] CHOO G, WANG W T, CHO H S, et al. Legacy and emerging persistent organic pollutants in the freshwater system: relative distribution, contamination trends, and bioaccumulation[J]. Environment International, 2020, 135: 105377. DOI: 10.1016/j.envint.2019.105377.
[20] HA P T, MOON H, KIM B H, et al. Determination of charge transfer resistance and capacitance of microbial fuel cell through a transient response analysis of cell voltage[J]. Biosensors and Bioelectronics, 2010, 25: 1629-1634. DOI: 10.1016/j.bios.2009.11.023.
[21] HU Q, SUN J J, SUN D Z, et al. Simultaneous Cr(Ⅵ) bio-reduction and methane production by anaerobic granular sludge[J]. Bioresource Technology, 2018, 262: 15-21. DOI: 10.1016/j.biortech.2018.04.060.
[22] LU Y Z, FU L, DING J, et al. Cr(Ⅵ) reduction coupled with anaerobic oxidation of methane in a laboratory reactor[J]. Water Research, 2016, 102: 445-452. DOI: 10.1016/j.watres.2016.06.065.
[23] ZHOU J, LI M, ZHOU W, et al. Efficacy of electrode position in microbial fuel cell for simultaneous Cr(Ⅵ) reduction and bioelectricity production[J]. Science of the Total Environment, 2020, 748: 141425. DOI: 10.1016/j.scitotenv.2020.141425.
[24] LI J R, CHEN T, YIN J, et al. Effect of nano-magnetite on the propionic acid degradation in anaerobic digestion system with acclimated sludge[J]. Bioresource Technology, 2021, 334: 125143. DOI: 10.1016/j.biortech.2021.125143.
[25] 李斗, 赵由才, 宋立岩, 等. 六价铬细菌还原的分子机制研究进展[J]. 环境科学, 2014, 35(4): 1602-1612. DOI: 10.13227/j.hjkx.2014.04.057.
[26] DUNFIELD P F, YURYEV A, SENIN P, et al. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia[J]. Nature, 2007, 450: 879-882. DOI: 10.1038/nature06411.
[27] LU Y Z, CHEN G J, BAI Y N, et al. Chromium isotope fractionation during Cr(Ⅵ) reduction in a methane-based hollow-fiber membrane biofilm reactor[J]. Water Research, 2018, 130: 263-270. DOI: 10.1016/j.watres.2017.11.045.
[28] LIU C Q, SUN D Z, ZHAO Z Q, et al. Methanothrix enhances biogas upgrading in microbial electrolysis cell via direct electron transfer[J]. Bioresource Technology, 2019, 291: 121877. DOI: 10.1016/j.biortech.2019.121877.
[29] ZHAO Z Q, WANG J F, LI Y, et al. Why do DIETers like drinking: metagenomic analysis for methane and energy metabolism during anaerobic digestion with ethanol[J]. Water Research, 2020, 171: 115425. DOI: 10.1016/j.watres.2019.115425.
[30] YIN Q D, GU M Q, HERMANOWICZ S W, et al. Potential interactions between syntrophic bacteria and methanogens via type Ⅳ pili and quorum-sensing systems[J]. Environment International, 2020, 138: 105650. DOI: 10.1016/j.envint.2020.105650.
[31] YOON J, MATSUO Y, ADACHI K, et al. Description of Persicirhabdus sediminis gen. nov., sp. nov., Roseibacillus ishigakijimensis gen. nov., sp. nov., Roseibacillus ponti sp. nov., Roseibacillus persicicus sp. nov., Luteolibacter pohnpeiensis gen. nov., sp. nov. and Luteolibacter algae sp. nov., six marine members of the phylum ‘Verrucomicrobia', and emended descriptions of the class Verrucomicrobiae, the order Verrucomicrobiales and the family Verrucomicrobiaceae[J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58: 998-1007. DOI: 10.1099/ijs.0.65520-0.
[32] LI T, ZHOU Q X. The key role of Geobacter in regulating emissions and biogeochemical cycling of soil-derived greenhouse gases[J]. Environmental Pollution, 2020, 266: 115135. DOI: 10.1016/j.envpol.2020.115135.
[33] DIMITROULA H, SYRANIDOU E, MANOUSAKI E, et al. Mitigation measures for chromium-Ⅵ contaminated groundwater: the role of endophytic bacteria in rhizofiltration[J]. Journal of Hazardous Materials, 2015, 281: 114-120. DOI: 10.1016/j.jhazmat.2014.08.005.
[1] CHEN Qingfeng, YU Zhe, HUANG Shiqi, YAO Duyang, CHEN Wei, WANG Zongping. Research on Fractal Characteristics of Algal-bacterial Granular Sludge [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 163-172.
[2] WANG Yuchen, SU Chengyuan, DING Fengxiu, WANG Qing, LI Xinjuan, DENG Xue. Current Situation and Prospect of Low Carbon Treatment of Food Waste and Excess Sludge by Anaerobic Co-Digestion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 406-417.
[3] TANG Linqin, WANG Anliu, SU Chengyuan, DENG Xue, ZHAO Lijian, XIAN Yunchuan, CHEN Yu. Effects of Different Nitrogen Sources on Physicochemical Properties andMicrobial Community of Aerobic Granular Sludge [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 144-153.
[4] CHEN Yuan. Photocatalytic Degradation of Tannery Wastewater by Square Flower-like Bi2WO6 under Visible Light [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 60-69.
[5] CHEN Meng-lin, SU Cheng-yuan, WANG Jian, HE Xing-cun, HUANG Zhi. Treatment of Reactive Brilliant Blue K-3R Dye Wastewater by Improved Inner Electrolytic-Photocatalytic [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 224-229.
[6] HE Xing-cun, TANG Xiao-lin, MAI Jin-lin, CHEN Meng-lin, HUANG Zhi. Treatment of Reactive Turquoise Blue KN-G by Intensive Iron Internal Electrolysis Combined with Ultrasound [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 230-235.
[7] LU Yuxiang, NONG Zhiwen, SU Chengyuan, CHEN Ruicong, LIU Fanfan, HUANG Zhi, CHEN Menglin. Efficiency and Micro-ecology of Microaeration-AnaerobicBaffled Reactor Treating Swine Wastewater [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 90-98.
[8] WEI Shixun, HE Chengda, ZHANG Miao. Treatment of Photovoltaic High Nitrate Wastewater by Anoxic Biofilm Process [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 182-190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Hongjin , ZHOU Xile , JIN Dongmei , WANG Ying , ZHU Xiaofeng , SHANG Hui , ZHAO Guohua , YAN Yuehong. Newly Recorded Taxa of Pteridophytes in Guangdong, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(2): 135 -142 .
[2] CHEN Zening, LUO Xuemei, LIAO Xian, CHEN Guoyan, WU Zhengjun. Killing Action of Calcium Chloride on Egg Mass of Pomacea canaliculata[J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 156 -161 .
[3] DU Xuesong,LIN Yong,LIANG Guokun,HUANG Yin,BIN Shiyu, CHEN Zhong,QIN Junqi,ZHAO Yi. Comparison of Low Temperature Resistant Performance between Two Tilapia[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 174 -179 .
[4] QIN Yuyue, LIU Xiaobo, XU Zhaolong, MO Tuxiang, LI Jun, YANG Ruiyun. Secondary Metabolites of Endophytic Fungus Xylaria sp. GDGJ-368 from Sophora tonkinensis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 71 -77 .
[5] CHEN Danni, CHEN Zhilin, ZHOU Shanyi. A Checklist of Family Formicidae of China: Myrmecinae (Addendum) (Insect: Hymenoptera)[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 87 -97 .
[6] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[7] LI Qian, LIU Xingzhao, LIAN Xinxin, LIN Sainan, LI Jiaxin. Research on Park Green Space Accessibility of Nantai Island in Fuzhou City, China, Based on Space Syntax[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 181 -195 .
[8] ZHAN Xin, CHEN Lijing, LIAO Guangfeng, LI Bing, LU Rumei. Research Progress of New C21-Steroids in Medicinal Plant of Asclepiadaceae (Ⅰ)[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 1 -29 .
[9] HOU Qianqian, FANG Zhigang, QIN Yu, ZHU Yiwen. Study on the Polarization of Fe4P Clusters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 140 -146 .
[10] BAI Shangwang, MA Xiaoqian, GAO Gaimei, LIU Chunxia, DANG Weichao. Byzantine Fault Tolerant Consensus Algorithm Based on Verifiable Random Function and BLS Signature[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 194 -201 .