Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (2): 67-75.doi: 10.16088/j.issn.1001-6600.2022040807

Previous Articles     Next Articles

Design of a Novel Current-Mirror Operational Transconductance Amplifier

ZHAO Yuan1, SONG Shuxiang1*, LIU Zhenyu1,2, CEN Mingcan1, CAI Chaobo1, JIANG Pinqun1   

  1. 1. College of Electronic Engineering, Guangxi Normal University, Guilin Guangxi 541004, China;
    2. Guangxi Technician College of Business, Wuzhou Guangxi 543100, China
  • Received:2022-04-08 Revised:2022-05-30 Online:2023-03-25 Published:2023-04-25

Abstract: A novel current-mirror operational transconductance amplifier was designed to overcome the disadvantages of low gain and small swing rate in traditional low-voltage micro-power current-mirror operational transconductance amplifier. Without affecting the static power consumption and stability of the circuit, the operational transconductance amplifier adopted gain boosting(GB)structure to increase the small signal gain of the circuit; the switched slow rate enhancement(SSRE)structure was introduced to improve the large signal swing rate of the circuit. The circuit was designed and simulated based on UMC 0.11μm standard CMOS process. The simulation results show that under 1.2 V power supply voltage and 10 pF load capacitance, and compared with the traditional current mirror operational transconductance amplifier, the gain of the new current mirror operational transconductance amplifier is increased by 47 dB, the positive slew rate is increased by 11.2 times and the negative slew rate is increased by 12.4 times.

Key words: gain boosting, slew-rate enhancement, low power, low voltage, current-mirror, operational transconductance amplifier

CLC Number: 

  • TN722.77
[1] HUNG C H, ZHENG Y Q, GUO J P, et al.Bandwidth and slew rate enhanced OTA with sustainable dynamic bias[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(4): 635-639.
[2] 凡东东, 宋树祥, 蒋品群,等.新型高增益CMOS跨导运算放大器[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 6-10.
[3] 谢海情, 陈玉辉, 王振宇.一种低压低功耗恒跨导轨到轨运算放大器设计[J].电子元件与材料, 2020, 39(10): 65-69.
[4] LUO H, HAN Y, CHEUNG R C C, et al. A 0.8-V 230-μW 98-dB DR inverter-based ∑Δ modulator for audio applications[J]. IEEE Journal of Solid-State Circuits, 2013, 48(10): 2430-2441.
[5] LEE H, MOK P K T, LEUNG K N.Design of low-power analog drivers based on slew-rate enhancement circuits for CMOS low-dropout regulators[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2005, 52(9): 563-567.
[6] BU S, TSE H W, LEUNG K N, et al. Gain and slew rate enhancement for amplifiers through current starving and feeding[C]// 2015 IEEE International Symposium on Circuits and Systems (ISCAS).Piscataway, NJ: IEEE, 2015: 2073-2076. DOI: 10.1109/ISCAS.2015.7169086.
[7] YAN Z S, MAK P I, LAW M K, et al. Nested-current-mirror rail-to-rail-output single-stage amplifier with enhancements of DC gain, GBW and slew rate[J]. IEEE Journal of Solid-State Circuits, 2015, 50(10): 2353-2366.
[8] BELOSO-LEGARRA J, DE LACRUZ-BLAS C A, LOPEZ-MARTIN A J, et al. Gain-boosted super class AB OTAs based on nested local feedback[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(9): 3562-3573.
[9] LEE S Y, SU P H, HUANG K L, et al. High-pass sigma-delta modulator with techniques of operational amplifier sharing and programmable feedforward coefficients for ECG signal acquisition[J]. IEEE Transactions on Biomedical Circuits and Systems, 2021, 15(3): 443-453.
[10] 孙帆, 黄海波, 王卫华.基于高摆率误差放大器的无片外电容LDO设计[J].电子元件与材料, 2022, 41(2): 206-212.
[11] 拉扎维. 模拟CMOS集成电路设计[M]. 陈贵灿,程军,张瑞智,等译.西安:西安交通大学出版社, 2003.
[12] 吴锋霖, 李思臻, 余凯, 等. 一种增益提升和摆率增强的运算跨导放大器[J]. 电子技术应用, 2020, 46(7): 65-69.
[13] 王梦海, 张春茗, 严展科. 一种增益和摆率提升的电流镜运算放大器[J]. 微电子学, 2019,49(4): 452-456.
[14] YAO L B, STEYAERT M S J, SANSEN W. A 1-V 140-μW 88-dB audio sigma-delta modulator in 90-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2004, 44(11): 1809-1818.
[15] KUO P Y, TSAI S D, et al. An enhanced scheme of multi-stage amplifier with high-speed high-gain blocks and recycling frequency cascode circuitry to improve gain-bandwidth and slew rate[J]. IEEE Access, 2019, 7: 130820-130829.
[16] FEIZBAKHSH S V, YOSEFI G. An enhanced fast slew rate recycling folded cascode Op-Amp with general improvement in 180 nm CMOS process[J]. AEU-International Journal of Electronics and Communications, 2019, 101: 200-217.
[17] DONG L Y, ZHAO X, WANG Y Q.Design of an adaptively biased low-dropout regulator with a current reusing current-mode OTA using an intuitive analysis method[J]. IEEE Transactions on Power Electronics, 2020, 35(10): 10477-10488.
[18] 宁宁, 倪春晓, 李靖,等. 高性能AB类折叠共源共栅CMOS放大器设计[J]. 微电子学, 2013, 43(3): 333-336.
[19] WANG Y Q, ZHANG Q S, YU S S, et al. A robust local positive feedback based performance enhancement strategy for non-recycling folded cascode OTA[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(9): 2897-2908.
[20] 范国亮, 张国俊. 一种增益提升和摆率增强的电流镜放大器[J]. 微电子学, 2016,46(3): 289-292.
[21] AKBARI M, HASHEMIPOUR O, MORADI F. A high slew rate CMOS OTA with dynamic current boosting paths[C]// 2018 IEEE International Symposium on Circuits and Systems (ISCAS). Piscataway, NJ: IEEE, 2018: 1-5. DOI: 10.1109/ISCAS.2018.8350926.
[1] LIU Zhenyu, SONG Shuxiang, CEN Mingcan, JIANG Pinqun, CAI Chaobo. Modeling and Design of Low Power and High Precision Sigma-Delta Modulator [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 58-70.
[2] ZHOU Shu, JIANG Pinqun, SONG Shuxiang. Design of a 2.8 to 8.5 GHz High Gain, Low Powerand Fully Integration UWB LNA [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 9-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHOU Zhengchun. Research Progress of Complementary Sequences[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 1 -16 .
[2] YANG Shuozhen, ZHANG Long, WANG Jianhua, ZHANG Hengyuan. Review of Sound Event Detection[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 1 -18 .
[3] YANG Shenglong, MU Qingchuang, ZHANG Zhihua, LIU Kui. Technical Progress in Recovery and Utilization of Spent Lithium-ion Batteries[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 19 -26 .
[4] LI Kangliang, QIU Caixiong, HE Shuang, HUANG Chunhua, WU Guanyi. Research Progress of IL-31 in Itch[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 27 -35 .
[5] LU Xumeng, NAN Xinyuan, XIA Sibo. Trajectory Tracking Control Based on Model-Free Coordinate Compensation Integral Sliding Mode Constraints[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 36 -48 .
[6] ZHANG Weijian, BING Qichun, SHEN Fuxin, HU Yanran, GAO Peng. Travel Time Estimation Method of Urban Expressway Section[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 49 -57 .
[7] YANG Xiu, WEI Duqu. Chaos Tracking Control of Permanent Magnet Synchronous Motor Based on Single State Variable[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 58 -66 .
[8] WANG Luna, DU Hongbo, ZHU Lijun. Stacked Capsule Autoencoders Optimization Algorithm Based on Manifold Regularization[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 76 -85 .
[9] ZHAO Ming, LUO Qiulian, CHEN Weimeng, CHEN Jiani. Influence of Control Timing and Strength on the Spreading of Epidemic[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 86 -97 .
[10] YANG Xiufeng, FAN Jianghua. Connectedness of the Strong Efficient Solution Set for Vector Equilibrium Problems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 98 -105 .