Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (1): 155-163.doi: 10.16088/j.issn.1001-6600.2021102801

Previous Articles     Next Articles

Antimicrobial Activity of the Secondary Metabolites from Citrus Endophytic Fungus Nemania sp. LJZ-Y-11

LI Qicong1,2,3,4, CHEN Jieping1,2,3,4, OU Yanshao1,2,3,4, YANG Shuxian1,2,3,4, DENG Zhiyong1,2,3,4, LUO Haiyu1,2,3,4 *, DENG Yecheng1,2,3,4*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), Guilin Guangxi 541006, China;
    3. Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guilin Guangxi 541006, China;
    4. Institute for Sustainable Development and Innovation (Guangxi Normal University), Guilin Guangxi 541006, China
  • Received:2021-10-28 Revised:2021-12-04 Online:2023-01-25 Published:2023-03-07

Abstract: Based on previous studies, citrus endophytic fungus Nemania sp. LJZ-Y-11 was selected for fermentation, extract preparation and evaluation of its antimicrobial activity, aiming to lay a foundation for the development and utilization of its metabolites. The antifungal and antibacterial activities of the ethyl acetate extract were determined by using a mycelium growth rate method and toxic medium coating method, respectively. The results showed that the ethyl acetate extract of LJZ-Y-11 exhibited an excellent antifungal activity against most of tested plant pathogenic fungi, and had an antibacterial activity against 10 animal pathogens to some extent. The inhibitory rate against 9 plant pathogenic fungi were all more than 50% at 2.5 g/L of the extract. Moreover, except that the inhibitory rate against Alternaria citri was 56.52%, the others were 100%. The toxicity of extract against 8 plant pathogenic fungi was determined furtherly, with EC50 values ranging from 0.004 8 g/L to 0.154 4 g/L. There was the highest inhibitory activity against Exserohilum turcicum, Diaporthe citri and Phytophthora parasitica var. nicotianae with EC50 values of 0.004 8, 0.005 3 and 0.006 7 g/L, respectively, less than 0.01 g/L, following by Colletotrichum capsici, Pestalotiopsis theae and Ceratocystis paradoxa with EC50 values of 0.022 7, 0.035 6 and 0.067 9 g/L, respectively, less than 0.1 g/L; and also had a significant inhibitory activity against Alternaria oleracea and Cochliobolus miyabeanus with EC50 values of 0.101 3 g/L and 0.154 4 g/L, respectively. In addition, the extract also showed significant antibacterial activities against 10 animal pathogens with MIC values of 0.078 1-2.5 g/L. There were high inhibitory activities against Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Bacillus cereus, Bacillus anthraci and Monilia albican with MIC values of less than 0.2 g/L, and had the highest inhibitory activity against Bacillus subtilis with a MIC value 0.078 1 g/L. There were also strong inhibitory effects against Bacillus megaterium and Micrococcus lysodeikticus, with a MIC value of 0.625 g/L. The inhibition activity against Enterobacter aerogenes and Salmonella typhi was relatively weaker, with MIC values of 2.5 g/L. The results in this study reveal that the secondary metabolites of LJZ-Y-11 has broad-spectrum and significant antimicrobial activity against the common pathogens, providing a useful experiment basis for the development and utilization of the secondary metabolites as biological antimicrobial agents.

Key words: citrus endophytic fungi, Nemania sp. ethyl acetate extract, antimicrobial activity

CLC Number: 

  • TQ455
[1] HUMEERA N,AZRA N K,IRSHAD A N,et al. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products:a review[J]. Microbial. Pathogenesis,2015,82:50-59. DOI:10.1016/j.micpath.2015.04.001.
[2]ANDRS M F,DIAZ C E,GIMENZ C,et al. Endophytic fungi as novel sources of biopesticides:the Macaronesian Laurel forest,a case study[J]. Phytochemistry Reviews,2017,16(5):1009-1022. DOI:10.1007/s11101-017-9514-4.
[3]SAIKKONEN K,FAETH S H,HELANDER M,et al. FUNGAL ENDOPHYTES:a continuum of interactions with host plants[J]. Annual Review of Ecology and Systematics,1998,29:319-343. DOI:10.1146/ANNUREV.ECOLSYS.29.1.319.
[4]LARRIBA E,JAIME M D L A,NISLOW C,et al. Endophytic colonization of barley(Hordeum vulgare) roots by the nematophagous fungus Pochonia chlamydosporia reveals plant growth promotion and a general defense and stress transcriptomic response[J]. Journal of Plant Research, 2015,128(4):665-678. DOI:10.1007/s10265-015-0731-x.
[5]SINGH A,SINGH D K,KHARWAR R N,et al. Fungal endophytes as efficient sources of plant-derived bioactive compounds and their prospective applications in natural product drug discovery:insights,avenues,and challenges[J]. Microorganisms,2021,9(1):197. DOI:10.3390/microorganisms9010197.
[6]WU H Y,YAN Z L,DENG Y C,et al. Endophytic fungi from the root tubers of medicinal plant Stephania dielsiana and their antimicrobial activity[J]. Acta Ecologica Sinica,2020,40(5):383-387. DOI:10.1016/j.chnaes.2020.02.008.
[7]SAAD M M G,GHAREEB R Y,SAEED A A. The potential of endophytic fungi as bio-control agents against the cotton leafworm,Spodoptera littoralis(Boisd.)(Lepidoptera:Noctuidae)[J]. Egyptian Journal of Biological Pest Control,2019,29(1):7. DOI:10.1186/s41938-019-0108-x.
[8]RATNAWEERA P B,JAYASUNDARA J M N,HERATH H H M S D,et al. Antifeedant,contact toxicity and oviposition deterrent effects of phyllostine acetate and phyllostine isolated from the endophytic fungus Diaporthe miriciae against Plutella xylostella larvae[J]. Pest Management Science,2020,76(4):1541-1548. DOI:10.1002/ps.5673.
[9]AMEEN F,STEPHENSON S L,ALNADHARI S,et al. Isolation,identification and bioactivity analysis of an endophytic fungus isolated from Aloe vera collected from Asir desert,Saudi Arabia[J]. Bioprocess and Biosystems Engineering,2021,44(6):1063-1070. DOI:10.1007/s00449-020-02507-1.
[10]甘琪,徐旭,张晓敏,等. 红树林植物内生真菌Stachybotrys chartarum HDN16-358次级代谢产物研究[J]. 中国海洋药物,2019,38(4):48-52. DOI:10.13400/j.cnki.cjmd.2019.04.007.
[11]黄燕,曾东强,唐文伟,等. 植物内生真菌生物活性成分研究进展[J]. 天然产物研究与开发,2020,32(8):1419-1437. DOI:10.16333/j.1001-6880.2020.8.019.
[12]崔迎,张志强,赵昕,等. 产西贝碱内生真菌的复壮[J]. 菌物研究,2010,8(1):41-43. DOI:10.13341/j.jfr.2010.01.002.
[13]VENUGOPALAN A,SRIVASTAVA Jr S. Endophytes as in vitro production platforms of high value plant secondary metabolites[J]. Biotechnology Advances,2015,33(6,Part 1):873-887. DOI:10.1016/j.biotechadv.2015.07.004.
[14]ARAU'JO W L,MACCHERONI W Jr,AGUILAR-VILDOSO C I,et al. Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks[J]. Canadian Journal of Microbiology,2001,47(3):229-236. DOI:10.1139/w00-146.
[15]BAAYEN R P,BONANTS P J M,VERKLEY G,et al. Nonpathogenic isolates of the citrus black spot fungus,Guignardia citricarpa,identified as a cosmopolitan endophyte of woody plants,G. mangiferae (Phyllosticta capitalensis)[J]. Phytopathology,2002,92(5):464-477. DOI:10.1094/PHYTO.2002.92.5.464.
[16]GLIENKE-BLANCO C,AGUILAR-VILDOSO C I,VIEIRA M L C,et al. Genetic variability in the endophytic fungus Guignardia citricarpa isolated from citrus plants[J]. Genetics and Molecular Biology,2002,25(2):251-255. DOI:10.1590/S1415-47572002000200021.
[17]RODRIGUES K F,SIEBER T N,GRNIG C R,et al. Characterization of Guignardia mangiferae isolated from tropical plants based on morphology,ISSR-PCR amplifications and ITS1-5.8S-ITS2 sequences[J]. Mycological Research,2004,108(1):45-52. DOI:10.1017/S0953756203008840.
[18]DURN E L,PLOPER L D,RAMALLO J C,et al. The foliar fungal endophytes of Citrus limon in Argentina[J]. Canadian Journal of Botany,2005,83(4):350-355. DOI:10.1139/b05-009.
[19]罗永兰,张志元,冉国华. 柑橘内生真菌的分离与鉴定[J]. 湖南农业大学学报(自然科学版),2005,31(4):418-421.DOI:10.3321/j.issn:1007-1032.2005.04.019.
[20]赵昌会,黄芳,丁芳. 柑橘内生真菌的分离及抗菌活性的初步研究[J]. 湖南科技学院学报,2008,29(12):72-73.
[21]SUN Y L,HAN S H,PARK Y C,et al. Identification and taxonomy of the endophytic fungi and potential pathogens in Citrus plants[J]. Journal of Pure and Applied Microbiology,2013,7:611-619.
[22]HUANG F,UDAYANGA D,WANG X H,et al. Endophytic Diaporthe associated with Citrus:a phylogenetic reassessment with seven new species from China[J]. Fungal Biology,2015,119(5):331-347. DOI:10.1016/j.funbio.2015.02.006.
[23]DOUANLA-MELI C,UNGER J G. Phylogenetic study of the Colletotrichum species on imported citrus fruits uncovers a low diversity and a new species in the Colletotrichum gigasporum complex[J]. Fungal Biology,2017,121(10):858-868. DOI:10.1016/j.funbio.2017.06.003.
[24]GUARNACCIA V,GROENEWALD J Z,LI H,et al. First report of Phyllosticta citricarpa and description of two new species,P. paracapitalensis and P. paracitricarpa,from citrus in Europe[J]. Studies in Mycology,2017,87:161-185. DOI:10.1016/j.simyco.2017.05.003.
[25]PENA L C,JUNG L F,SAVI D C,et al. A Muscodor strain isolated from Citrus sinensis and its production of volatile organic compounds inhibiting Phyllosticta citricarpa growth[J]. Journal of Plant Diseases and Protection,2017,124(4):349-360. DOI:10.1007/s41348-016-0065-5.
[26]WACULICZ-ANDRADE C E,SAVI D C,BINI A P,et al. Colletotrichum gloeosporioides sensu stricto:an endophytic species or citrus pathogen in Brazil?[J]. Australasian Plant Pathology,2017,46(2):191-203. DOI:10.1007/s13313-017-0476-1.
[27]郭东升,原晨虹,翟颖妍,等. 柑橘内生燕麦镰刀菌Gds-1对柑橘青霉病的防治研究[J]. 农药学学报,2020,22(5):782-790. DOI:10.16801/j.issn.1008-7303.2020.0085.
[28]颜桢灵,陈洁萍,农小霞,等. 柑橘内生真菌的分离鉴定及其发酵产物对柑橘溃疡病菌的抑制活性[J]. 广西植物,2021,41(7):1196-1208. DOI:10.11931/guihaia.gxzw202002021.
[29]LUO H Y,ZHOU Q Y,DENG Y C,et al. Antifungal activity of the extract and the active substances of endophytic Nigrospora sp. from the traditional Chinese medicinal plant Stephania kwangsiensis[J]. Natural Product Communications,2017,12(12):1889-1892. DOI:10.1177/1934578X1701201219.
[30]DENG Y C, YU Y Z, LUO H Y, et al. Antimicrobial activity of extract and two alkaloids from traditional Chinese medicinal plant Stephania dielsiana[J]. Food Chemistry, 2011, 124(4): 1556-1560. DOI:10.1016/j.foodchem.2010.08.011.
[31]周秋艳,卿朕,骆海玉,等. 两株广西地不容内生真菌的抑菌活性研究[J]. 广东农业科学,2016,43(4):111-116. DOI:10.16768/j.issn.1004-874X.2016.04.022.
[32]林伟,骆海玉,邓业成,等. 血散薯块根内生真菌Periconia igniaria Stdif10发酵产物的生物活性研究[J]. 河南农业科学,2020,49(1):75-81. DOI:10.15933/j.cnki.1004-3268.2020.01.010.
[33]王慧芳,程叶新,白金虎,等. 艾灰黄酮超声提取工艺的优化及其抑菌活性[J]. 中成药,2021,43(9):2286-2292. DOI:10.3969/j.issn.1001-1528.2021.09.002.
[34]吴永祥,程满怀,江海涛,等. 白及萃取物的抑菌活性及其二氯甲烷萃取物化学成分分析[J]. 食品与机械,2017,33(12):76-79. DOI:10.13652/j.issn.1003-5788.2017.12.015.
[35]李雯霞,于司达,诸葛斌,等. 芍药花提取物对果蔬腐败菌的抑菌活性及其在樱桃番茄保鲜中的应用[J]. 食品与发酵工业,2018,44(2):228-232. DOI:10.13995/j.cnki.11-1802/ts.015384.
[36]赵国栋. 凤丹种荚提取物抗菌活性研究[J]. 现代农业科技,2019(13):200-201. DOI:10.3969/j.issn.1007-5739.2019.13.111.
[37]陆春雷,赵雨菡,姜金源,等. 樟芝深层发酵液萃取物对食源性致病菌的抑制效果[J]. 中国食用菌,2021,40(6):69-73,79. DOI:10.13629/j.cnki.53-1054.2021.06.014.
[38]李欣,乔家驹,冯汉青,等. 杜仲雄花乙酸乙酯提取物的抑菌活性研究[J]. 食品工业科技,2015,36(11):62-65. DOI:10.13386/j.issn1002-0306.2015.11.004.
[39]邵玲莉,钱思,施晓秦,等. 无患子皂苷的提取及抑菌性研究[J]. 安徽医药,2021,25(10):1943-1945. DOI:10.3969/j.issn.1009-6469.2021.10.008.
[40]陈炳智,杨立志,郑丽珠,等. 长裙竹荪抑菌活性物质的分离纯化及其抑菌效果[J]. 菌物学报,2020,39(8):1568-1579. DOI:10.13346/j.mycosystema.200017.
[41]KORNSAKULKARN J, SAEPUA S, SUVANNAKAD R,et al. Cytotoxic tropolones from the fungus Nemania sp. BCC 30850[J]. Tetrahedron,2017,73(25):3505-3512.DOI:10.1016/j.tet.2017.05.030.
[42] IBRAHIM A, SRENSEN D, JENKINS H A, et al. Epoxynemanione A, nemanifuranones A-F, and nemanilactones A-C, from Nemania serpens, an endophytic fungus isolated from Riesling grapevines[J]. Phytochemistry, 2017, 140: 16-26. DOI: 10.1016/j.phytochem.2017.04.009.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LU Qi-xi, LIN Yong, BIN Shi-yu, TANG Zhang-sheng, PENG Ting. Analysis of Cold Tolerance Measure at Low-temperature in Six Tilapia Families[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 104 -109 .
[2] CHENG Rui, HE Mingxian, ZHONG Chunying, LUO Shuyi, WU Zhengjun. Comparison of Swimming Ability between Wild and Captive Breeding Shinisaurus crocodilurus[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 79 -86 .
[3] CHEN Danni, CHEN Zhilin, ZHOU Shanyi. A Checklist of Family Formicidae of China: Myrmecinae (Addendum) (Insect: Hymenoptera)[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 87 -97 .
[4] LI Shuang, LIU Shangli, PEI Siyu, TANG Shaoqing. A Study on Genetic Diversity of Camellia huana by Single-copy Nuclear Gene PAL[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 128 -135 .
[5] YAO Jinyang, HU Ying, WANG Jinhua. Existence of Generalized Howell Designs GHD(n+5,3n)s[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 119 -129 .
[6] FU Meizi, LIN Bingqing. Bland-Altman Method for Assessing Agreement of Quantitative Data in Clinical Measurement[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 125 -138 .
[7] SUN Yansong, YANG Liang, LIN Hongfei. Humor Recognition of Sitcom Based on Multi-granularity of Segmentation Enhancement and Semantic Enhancement[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 57 -65 .
[8] HAO Yaru, DONG Li, XU Ke, LI Xianxian. Interpretability of Pre-trained Language Models: A Survey[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 59 -71 .
[9] WANG Ximin, YUAN Jie, KOU Qiaoyuan. An Improved Slime Mould Algorithm Based on Multi-Strategy[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 98 -108 .
[10] ZHANG Chunmei, YAN Fang, SONG Hai, ZHANG Xifeng , CHEN Ye. Sequencing and Bioinformatic Analysis for Transcriptome of Shandan Sphallerocarpus racills Leaf[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 247 -256 .