Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (3): 172-184.doi: 10.16088/j.issn.1001-6600.2021071505
Previous Articles Next Articles
YAN Longchuan1*, LI Yan1, SONG Hu2, ZOU Haodong2, WANG Lijun3
CLC Number:
[1]中国互联网络信息中心. 第47次中国互联网络发展状况统计报告[R]. 北京:中国互联网络信息中心, 2021. [2]GUO Z G, ZHANG Y F, LV J X, et al. An online learning collaborative method for traffic forecasting and routing optimization[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(10):6634-6645. DOI: 10.1109/TITS.2020.2986158. [3]ALAWE I, KSENTINI A, HADJADJ-AOUL Y, et al. Improving traffic forecasting for 5G core network scalability: a machine learning approach[J]. IEEE Network, 2018, 32(6): 42-49. DOI: 10.1109/MNET.2018.1800104. [4]黎嘉诚. 基于小波神经网络的校园网络流量预测研究[D].南昌:南昌大学, 2019. [5]BOX G E P, JENKINS G M, REINSEL G C, et al. Time series analysis: forecasting and control[M]. Hoboken: John Wiley & Sons, 2016. [6]HONG W C. Application of seasonal SVR with chaotic immune algorithm in traffic flow forecasting[J]. Neural Computing and Applications, 2012, 21(3): 583-593. DOI: 10.1007/s00521-010-0456-7. [7]TROIA S, ALVIZU R, ZHOU Y D, et al. Deep learning-based traffic prediction for network optimization[C]// 2018 20th International Conference on Transparent Optical Networks(ICTON). Piscataway,NJ:IEEE, 2018: 1-4. DOI: 10.1109/ICTON.2018.8473978. [8]ANDREOLETTI D, TROIA S, MUSUMECI F, et al. Network traffic prediction based on diffusion convolutional recurrent neural networks[C]// IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops(INFOCOM WKSHPS). Piscataway,NJ: IEEE, 2019: 246-251. DOI: 10.1109/INFCOMW.2019.8845132. [9]ROUGHAN M, ZHANG Y, WILLINGER W, et al. Spatio-temporal compressive sensing and internet traffic matrices(extended version)[J]. IEEE/ACM Transactions on Networking, 2012, 20(3): 662-676. DOI: 10.1109/TNET.2011.2169424. [10]XU Y, XU W J, YIN F, et al. High-accuracy wireless traffic prediction: a GP-based machine learning approach[C]// GLOBECOM 2017-2017 IEEE Global Communications Conference. Piscataway, NJ: IEEE, 2017: 1-6. DOI: 10.1109/GLOCOM.2017.8254808. [11]WANG J, TANG J, XU Z Y, et al. Spatiotemporal modeling and prediction in cellular networks: a big data enabled deep learning approach[C]// IEEE INFOCOM 2017-IEEE Conference on Computer Communications. Piscataway, NJ: IEEE, 2017: 1-9. DOI: 10.1109/INFOCOM.2017.8057090. [12]HUA Y X, ZHAO Z F, LI R P, et al. Deep learning with long short-term memory for time series prediction[J]. IEEE Communications Magazine, 2019, 57(6): 114-119. DOI: 10.1109/MCOM.2019.1800155. [13]谢贵才,段磊,蒋为鹏,等. 多尺度时序依赖的校园公共区域人流量预测[J]. 软件学报,2021,32(3):831-844. DOI:10.13328/j.cnki.jos.006183. [14]冯宁,郭晟楠,宋超,等. 面向交通流量预测的多组件时空图卷积网络[J]. 软件学报,2019,30(3):759-769.DOI: 10.13328/j.cnki.jos.005697. [15]张建晋,王韫博,龙明盛,等. 面向季节性时空数据的预测式循环网络及其在城市计算中的应用[J]. 计算机学报,2020,43(2):286-302. [16]PENG K, MENZIES T. Documenting evidence of a reuse of ‘“why should I trust you?”: explaining the predictions of any classifier’[C]// Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. New York: ACM, 2016: 1135-1144. DOI: 10.1145/3468264.3477217. [17]LUNDBERG S M, LEE S I. A unified approach to interpreting model predictions[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 4768-4777. [18]葛娜,孙连英,石晓达,等. Prophet-LSTM组合模型的销售量预测研究[J]. 计算机科学,2019,46(S1):446-451. [19]CHEN T T, LEE S J. A weighted LS-SVM based learning system for time series forecasting[J]. Information Sciences, 2015, 299: 99-116. DOI: 10.1016/j.ins.2014.12.031. [20]WANG L, ZENG Y, CHEN T. Back propagation neural network with adaptive differential evolution algorithm for time series forecasting[J]. Expert Systems with Applications, 2015, 42(2): 855-863. DOI: 10.1016/j.eswa.2014.08.018. [21]QIU X H, REN Y, SUGANTHANP N, et al. Empirical mode decomposition based ensemble deep learning for load demand time series forecasting[J]. Applied Soft Computing, 2017, 54: 246-255. DOI: 10.1016/j.asoc.2017.01.015. [22]SALINAS D, FLUNKERT V, GASTHAUS J, et al. DeepAR: probabilistic forecasting with autoregressive recurrent networks[J]. International Journal of Forecasting, 2020, 36(3): 1181-1191. DOI: 10.1016/j.ijforecast.2019.07.001. [23]TAYLOR S J, LETHAM B. Forecasting at scale[J]. The American Statistician, 2018, 72(1): 37-45.DOI: 10.7287/peerj.preprints.3190v2. [24]杨新宇,杨树森,李娟.基于非线性预处理网络流量预测方法的泛洪型DDoS攻击检测算法[J].计算机学报,2011,34(2):395-405. |
[1] | ZHANG Ping, XU Qiaozhi. Segmentation of Lung Nodules Based on Multi-receptive Field and Grouping Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 76-87. |
[2] | LI Yongjie, ZHOU Guihong, LIU Bo. Fusion Algorithm of Face Detection and Head Pose Estimation Based on YOLOv3 Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 95-103. |
[3] | WU Jun, OUYANG Aijia, ZHANG Lin. Phosphorylation Site Prediction Model Based on Multi-head Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 161-171. |
[4] | LU Kaifeng, YANG Yilong, LI Zhi. A Web Service Classification Method Using BERT and DPCNN [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 87-98. |
[5] | WU Lingyu, LAN Yang, XIA Haiying. Retinal Image Registration Using Convolutional Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 122-133. |
[6] | CHEN Wenkang, LU Shenglian, LIU Binghao, LI Guo, LIU Xiaoyu, CHEN Ming. Real-time Citrus Recognition under Orchard Environment by Improved YOLOv4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 134-146. |
[7] | YANG Zhou, FAN Yixing, ZHU Xiaofei, GUO Jiafeng, WANG Yue. Survey on Modeling Factors of Neural Information Retrieval Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 1-12. |
[8] | DENG Wenxuan, YANG Hang, JIN Ting. A Dimensionality-reduction Method Based on Attention Mechanismon Image Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 32-40. |
[9] | XUE Tao, QIU Senhui, LU Hao, QIN Xingsheng. Exchange Rate Prediction Based on Empirical Mode Decomposition and Multi-branch LSTM Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 41-50. |
[10] | TANG Rongchai, WU Xiru. Real-time Detection of Passion Fruit Based on Improved YOLO-V3 Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 32-39. |
[11] | ZHANG Mingyu,ZHAO Meng,CAI Fuhong,LIANG Yu,WANG Xinhong. Wave Power Prediction Based on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 25-32. |
[12] | LI Weiyong, LIU Bin, ZHANG Wei, CHEN Yunfang. An Automatic Summarization Model Based on Deep Learning for Chinese [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 51-63. |
[13] | LIU Yingxuan, WU Xiru, XUE Ganggang. Multi-target Real-time Detection for Road Traffic SignsBased on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 96-106. |
[14] | ZHANG Jinlei, LUO Yuling, FU Qiang. Predicting Financial Time Series Based on Gated Recurrent Unit Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 82-89. |
[15] | HUANG Liming,CHEN Weizheng,YAN Hongfei,CHEN Chong. A Stock Prediction Method Based on Recurrent Neural Network and Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 13-22. |
|