Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (3): 172-184.doi: 10.16088/j.issn.1001-6600.2021071505

Previous Articles     Next Articles

Web Traffic Prediction Based on Prophet-DeepAR

YAN Longchuan1*, LI Yan1, SONG Hu2, ZOU Haodong2, WANG Lijun3   

  1. 1. State Grid Information & Telecommunication Branch, Beijing 100761, China;
    2. State Grid Jiangsu Electric Power Co., LTD. Information & Telecommunication Branch, Nanjing Jiangsu 211106, China;
    3. State Grid Electric Power Research Institute, Nanjing Jiangsu 210024, China
  • Received:2021-07-15 Revised:2021-10-23 Online:2022-05-25 Published:2022-05-27

Abstract: Web traffic prediction has always been a hot issue in data center networks, which is of great significance for improving the quality of network services. Due to the complex characteristics of web traffic such as non-linearity, autocorrelation, and periodicity, it is very challenging to accurately predict it. In order to fully mine the predictable information of web traffic and make the prediction model fully interpretable and configurable, this paper proposes a combined prediction model based on Prophet and deep autoregression (DeepAR). Among them, Prophet is an additive model based on time series decomposition, which models the trend, seasonal period, and holiday information of Web traffic. At the same time, the autoregressive information implied by the Prophet residual is modeled using the DeepAR model based on probability prediction, and the long-term and short-term dependencies are captured to reduce the variance of the Prophet residual and fully capture the autoregressive information of web traffic. In this paper, the verification experiments are carried out on the real Web traffic dataset, and the results show that the evaluation indicators of RMSE and MAE are better than the comparative models, which verifies the effectiveness of the combined model.

Key words: time series, web traffic forecasting, prophet model, deep learning, auto-regression

CLC Number: 

  • TP393.06
[1]中国互联网络信息中心. 第47次中国互联网络发展状况统计报告[R]. 北京:中国互联网络信息中心, 2021.
[2]GUO Z G, ZHANG Y F, LV J X, et al. An online learning collaborative method for traffic forecasting and routing optimization[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(10):6634-6645. DOI: 10.1109/TITS.2020.2986158.
[3]ALAWE I, KSENTINI A, HADJADJ-AOUL Y, et al. Improving traffic forecasting for 5G core network scalability: a machine learning approach[J]. IEEE Network, 2018, 32(6): 42-49. DOI: 10.1109/MNET.2018.1800104.
[4]黎嘉诚. 基于小波神经网络的校园网络流量预测研究[D].南昌:南昌大学, 2019.
[5]BOX G E P, JENKINS G M, REINSEL G C, et al. Time series analysis: forecasting and control[M]. Hoboken: John Wiley & Sons, 2016.
[6]HONG W C. Application of seasonal SVR with chaotic immune algorithm in traffic flow forecasting[J]. Neural Computing and Applications, 2012, 21(3): 583-593. DOI: 10.1007/s00521-010-0456-7.
[7]TROIA S, ALVIZU R, ZHOU Y D, et al. Deep learning-based traffic prediction for network optimization[C]// 2018 20th International Conference on Transparent Optical Networks(ICTON). Piscataway,NJ:IEEE, 2018: 1-4. DOI: 10.1109/ICTON.2018.8473978.
[8]ANDREOLETTI D, TROIA S, MUSUMECI F, et al. Network traffic prediction based on diffusion convolutional recurrent neural networks[C]// IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops(INFOCOM WKSHPS). Piscataway,NJ: IEEE, 2019: 246-251. DOI: 10.1109/INFCOMW.2019.8845132.
[9]ROUGHAN M, ZHANG Y, WILLINGER W, et al. Spatio-temporal compressive sensing and internet traffic matrices(extended version)[J]. IEEE/ACM Transactions on Networking, 2012, 20(3): 662-676. DOI: 10.1109/TNET.2011.2169424.
[10]XU Y, XU W J, YIN F, et al. High-accuracy wireless traffic prediction: a GP-based machine learning approach[C]// GLOBECOM 2017-2017 IEEE Global Communications Conference. Piscataway, NJ: IEEE, 2017: 1-6. DOI: 10.1109/GLOCOM.2017.8254808.
[11]WANG J, TANG J, XU Z Y, et al. Spatiotemporal modeling and prediction in cellular networks: a big data enabled deep learning approach[C]// IEEE INFOCOM 2017-IEEE Conference on Computer Communications. Piscataway, NJ: IEEE, 2017: 1-9. DOI: 10.1109/INFOCOM.2017.8057090.
[12]HUA Y X, ZHAO Z F, LI R P, et al. Deep learning with long short-term memory for time series prediction[J]. IEEE Communications Magazine, 2019, 57(6): 114-119. DOI: 10.1109/MCOM.2019.1800155.
[13]谢贵才,段磊,蒋为鹏,等. 多尺度时序依赖的校园公共区域人流量预测[J]. 软件学报,2021,32(3):831-844. DOI:10.13328/j.cnki.jos.006183.
[14]冯宁,郭晟楠,宋超,等. 面向交通流量预测的多组件时空图卷积网络[J]. 软件学报,2019,30(3):759-769.DOI: 10.13328/j.cnki.jos.005697.
[15]张建晋,王韫博,龙明盛,等. 面向季节性时空数据的预测式循环网络及其在城市计算中的应用[J]. 计算机学报,2020,43(2):286-302.
[16]PENG K, MENZIES T. Documenting evidence of a reuse of ‘“why should I trust you?”: explaining the predictions of any classifier’[C]// Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. New York: ACM, 2016: 1135-1144. DOI: 10.1145/3468264.3477217.
[17]LUNDBERG S M, LEE S I. A unified approach to interpreting model predictions[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 4768-4777.
[18]葛娜,孙连英,石晓达,等. Prophet-LSTM组合模型的销售量预测研究[J]. 计算机科学,2019,46(S1):446-451.
[19]CHEN T T, LEE S J. A weighted LS-SVM based learning system for time series forecasting[J]. Information Sciences, 2015, 299: 99-116. DOI: 10.1016/j.ins.2014.12.031.
[20]WANG L, ZENG Y, CHEN T. Back propagation neural network with adaptive differential evolution algorithm for time series forecasting[J]. Expert Systems with Applications, 2015, 42(2): 855-863. DOI: 10.1016/j.eswa.2014.08.018.
[21]QIU X H, REN Y, SUGANTHANP N, et al. Empirical mode decomposition based ensemble deep learning for load demand time series forecasting[J]. Applied Soft Computing, 2017, 54: 246-255. DOI: 10.1016/j.asoc.2017.01.015.
[22]SALINAS D, FLUNKERT V, GASTHAUS J, et al. DeepAR: probabilistic forecasting with autoregressive recurrent networks[J]. International Journal of Forecasting, 2020, 36(3): 1181-1191. DOI: 10.1016/j.ijforecast.2019.07.001.
[23]TAYLOR S J, LETHAM B. Forecasting at scale[J]. The American Statistician, 2018, 72(1): 37-45.DOI: 10.7287/peerj.preprints.3190v2.
[24]杨新宇,杨树森,李娟.基于非线性预处理网络流量预测方法的泛洪型DDoS攻击检测算法[J].计算机学报,2011,34(2):395-405.
[1] ZHANG Ping, XU Qiaozhi. Segmentation of Lung Nodules Based on Multi-receptive Field and Grouping Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 76-87.
[2] LI Yongjie, ZHOU Guihong, LIU Bo. Fusion Algorithm of Face Detection and Head Pose Estimation Based on YOLOv3 Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 95-103.
[3] WU Jun, OUYANG Aijia, ZHANG Lin. Phosphorylation Site Prediction Model Based on Multi-head Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 161-171.
[4] LU Kaifeng, YANG Yilong, LI Zhi. A Web Service Classification Method Using BERT and DPCNN [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 87-98.
[5] WU Lingyu, LAN Yang, XIA Haiying. Retinal Image Registration Using Convolutional Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 122-133.
[6] CHEN Wenkang, LU Shenglian, LIU Binghao, LI Guo, LIU Xiaoyu, CHEN Ming. Real-time Citrus Recognition under Orchard Environment by Improved YOLOv4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 134-146.
[7] YANG Zhou, FAN Yixing, ZHU Xiaofei, GUO Jiafeng, WANG Yue. Survey on Modeling Factors of Neural Information Retrieval Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 1-12.
[8] DENG Wenxuan, YANG Hang, JIN Ting. A Dimensionality-reduction Method Based on Attention Mechanismon Image Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 32-40.
[9] XUE Tao, QIU Senhui, LU Hao, QIN Xingsheng. Exchange Rate Prediction Based on Empirical Mode Decomposition and Multi-branch LSTM Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 41-50.
[10] TANG Rongchai, WU Xiru. Real-time Detection of Passion Fruit Based on Improved YOLO-V3 Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 32-39.
[11] ZHANG Mingyu,ZHAO Meng,CAI Fuhong,LIANG Yu,WANG Xinhong. Wave Power Prediction Based on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 25-32.
[12] LI Weiyong, LIU Bin, ZHANG Wei, CHEN Yunfang. An Automatic Summarization Model Based on Deep Learning for Chinese [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 51-63.
[13] LIU Yingxuan, WU Xiru, XUE Ganggang. Multi-target Real-time Detection for Road Traffic SignsBased on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 96-106.
[14] ZHANG Jinlei, LUO Yuling, FU Qiang. Predicting Financial Time Series Based on Gated Recurrent Unit Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 82-89.
[15] HUANG Liming,CHEN Weizheng,YAN Hongfei,CHEN Chong. A Stock Prediction Method Based on Recurrent Neural Network and Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 13-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] AI Yan, JIA Nan, WANG Yuan, GUO Jing, PAN Dongdong. Review of Statistical Methods and Applications of Genetic Association Analysis for Multiple Traits and Multiple Locus[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 1 -14 .
[2] BAI Defa, XU Xin, WANG Guochang. Review of Generalized Linear Models and Classification for Functional Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 15 -29 .
[3] ZENG Qingfan, QIN Yongsong, LI Yufang. Empirical Likelihood Inference for a Class of Spatial Panel Data Models[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 30 -42 .
[4] ZHANG Zhifei, DUAN Qian, LIU Naijia, HUANG Lei. High-dimensional Nonlinear Regression Model Based on JMI[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 43 -56 .
[5] YANG Di, FANG Yangxin, ZHOU Yan. New Category Classification Research Based on MEB and SVM Methods[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 57 -67 .
[6] CHEN Zhongxiu, ZHANG Xingfa, XIONG Qiang, SONG Zefang. Estimation and Test for Asymmetric DAR Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 68 -81 .
[7] DU Jinfeng, WANG Hairong, LIANG Huan, WANG Dong. Progress of Cross-modal Retrieval Methods Based on Representation Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 1 -12 .
[8] LI Muhang, HAN Meng, CHEN Zhiqiang, WU Hongxin, ZHANG Xilong. Survey of Algorithms Oriented to Complex High Utility Pattern Mining[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 13 -30 .
[9] CHAO Rui, ZHANG Kunli, WANG Jiajia, HU Bin, ZHANG Weicong, HAN Yingjie, ZAN Hongying. Construction of Chinese Multimodal Knowledge Base[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 31 -39 .
[10] LI Zhengguang, CHEN Heng, LIN Hongfei. Identification of Adverse Drug Reaction on Social Media Using Bi-directional Language Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 40 -48 .