Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (3): 121-131.doi: 10.16088/j.issn.1001-6600.2021071401
Previous Articles Next Articles
JIANG Rui1, XU Juan2*, LI Qiang1
CLC Number:
[1]SI X S, WANG W B, HU C H, et al. Remaining useful life estimation:a review on the statistical data driven approaches[J]. European Journal of Operational Research, 2011, 213(1):1-14. DOI: 10.1016/j.ejor.2010.11.018. [2]张小丽, 王保建, 马猛,等. 滚动轴承寿命预测综述[J]. 机械设计与制造, 2015(10):221-224. [3]康守强, 邢颖怡, 王玉静,等. 基于无监督深度模型迁移的滚动轴承寿命预测方法[J/OL]. 自动化学报, [2021-07-14]. https://doi.org/10.16383/j.aas.c200890. [4]周玉辉, 康锐. 基于退化失效模型的旋转机械寿命预测方法[J]. 核科学与工程, 2009,29(2):146-151. [5]侯南, 刘珑, 江婷,等. 基于实时监测的轴承寿命预测方法[J]. 山东科学, 2021, 34(3):42-48. [6]杨彦宇. 以振动信号为基础的数字信号处理方法对滚动轴承寿命预测的研究[D].北京: 北京化工大学, 2016. [7]欧龙辉, 彭晓燕, 杨宇,等. GS-ASTFA方法及其在滚动轴承寿命预测中的应用[J]. 振动与冲击, 2017, 36(11): 14-19. [8]李华新, 王衍学. 基于分层稀疏编码的轴承剩余寿命预测方法[J]. 现代制造工程, 2019(5):7-12. [9]张成龙, 刘杰, 李想. 基于改进PSO-SVR的多轴承健康寿命协同预测[J]. 机床与液压, 2020,48(16):206-211. [10]曾大懿, 蒋雨良, 邹益胜, 等. 一种新的轴承寿命预测特征评价指标构建与验证[J]. 振动与冲击, 2021, 40(22):18-27. [11]CHEN Y H, PENG G L, ZHU Z Y, et al. A novel deep learning method based on attention mechanism for bearing remaining useful life prediction[J]. Applied Soft Computing, 2020, 86:105919. DOI: 10.1016/j.asoc.2019.105919. [12]ZANG S F, CHENG Y H, WANG X S, et al. Cross domain mean approximation for unsupervised domain adaptation[J]. IEEE Access, 2020,8:139052-139069. DOI: 10.1109/ACCESS.2020.3012152. [13]ZHAO L, WANG X. A deep feature optimization fusion method for extracting bearing degradation features[J]. IEEE Access, 2018,6:19640-19653. DOI: 10.1109/ACCESS.2018.2824352. [14]SATEESH BABU G, ZHAO P L, LI X L. Deep convolutional neural network based regression approach for estimation of remaining useful life[C]// Database Systems for Advanced Applications. Cham: Springer, 2016:214-228. [15]RAO M, LI Q, WEI D D, et al. A deep bi-directional long short-term memory model for automatic rotating speed extraction from raw vibration signals[J]. Measurement, 2020, 158:107719. DOI: 10.1016/j.measurement.2020.107719. [16]PEI H, SI X S, HU C H, et al. An adaptive prognostics method for fusing CDBN and diffusion process: application to bearing data[J]. Neurocomputing, 2021, 421:303-315. DOI: 10.1016/j.neucom.2020.09.021. [17]HARIS M, HASAN M N, QIN S Y. Early and robust remaining useful life prediction of supercapacitors using BOHB optimized deep belief network[J]. Applied Energy, 2021,286:116541. DOI: 10.1016/j.apenergy.2021.116541. [18]GUO L, LEI Y G, LI N P, et al. Machinery health indicator construction based on convolutional neural networks considering trend burr[J]. Neurocomputing, 2018, 292:142-150. DOI: 10.1016/j.neucom.2018.02.083. [19]REN L, CUI J, SUN Y Q, et al. Multi-bearing remaining useful life collaborative prediction: a deep learning approach[J]. Journal of Manufacturing Systems, 2017,43(2):248-256. DOI: 10.1016/j.jmsy.2017.02.013. [20]WU Y T, MEI Y, DONG S P, et al. Remaining useful life estimation of engineered systems using vanilla LSTM neural networks[J]. Neurocomputing, 2018,275:167-179. DOI: 10.1016/j.neucom.2017.05.063. [21]ZHAO R, WANG D Z, YAN R Q, et al. Machine health monitoring using local feature-based gated recurrent unit networks[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2):1539-1548. DOI: 10.1109/TIE.2017.2733438. [22]HUANG J Y, SMOLA A J, GRETTON A, et al. Correcting sample selection bias by unlabeled data[C]// Proceedings of the 19th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2006:601-608. [23]SUN B C, SAENKO K. Subspace distribution alignment for unsupervised domain adaptation[C]// Proceedings of the British Machine Vision Conference. Swansea: BMVA Press, 2015: 24.1-24.10. DOI: 10.52244/c.29.24. [24]WANG C, MAHADEVAN S. Manifold alignment preserving global geometry[C]// Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2013:1743-1749. [25]XIA R, HU X L, LU J F, et al. Instance selection and instance weighting for cross-domain sentiment classification via PU learning[C]// Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2013:2176-2182. [26]LONG M S, WANG J M, DING G G, et al. Transfer joint matching for unsupervised domain adaptation[C]// 2014 IEEE Conference on Computer Vision & Pattern Recognition. Piscataway: IEEE, 2014:1410-1417. [27]欧琦媛, 祝恩. 基于压缩子空间对齐的多核聚类算法[J]. 计算机工程与科学, 2021, 43(10):1730-1735. [28]张祖于. 基于特征分布差异自适应的无监督迁移学习方法研究[D].重庆:重庆邮电大学, 2019. [29]PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2):199-210. DOI: 10.1109/tnn.2010.2091281. [30]LONG M S, WANG J M, DING G G, et al. Transfer feature learning with joint distribution adaptation[C]// Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2013:2200-2207. [31]LI J J, JING M M, LU K, et al. Locality preserving joint transfer for domain adaptation[J]. IEEE Transactions on Image Processing, 2019, 28(12):6103-6115. DOI: 10.1109/TIP.2019.2924174. [32]LI J J, LU K, HUANG Z, et al. Heterogeneous domain adaptation through progressive alignment[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(5):1381-1391. DOI: 10.1109/TNNLS.2018.2868854. [33]YAN H l, DING Y K, LI P H, et al. Mind the class weight bias: weighted maximum mean discrepancy for unsupervised domain adaptation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017:945-954. DOI: 10.1109/CVPR.2017.107. [34]ZANG S F, CHENG Y H, WANG X S, et al. Semi-supervised transfer discriminant analysis based on cross-domain mean constraint[J]. Artificial Intelligence Review, 2018,49(4):581-595. DOI: 10.1007/s10462-016-9533-3. |
[1] | ZHOU Shengkai, FU Lizhen, SONG Wen’ai. Semantic Similarity Computing Model for Short Text Based on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 49-56. |
[2] | MA Xinna, ZHAO Men, QI Lin. Fault Diagnosis Based on Spiking Convolution Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 112-120. |
[3] | ZHANG Jinlei, LUO Yuling, FU Qiang. Predicting Financial Time Series Based on Gated Recurrent Unit Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 82-89. |
|