Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (3): 112-120.doi: 10.16088/j.issn.1001-6600.2021070808
Previous Articles Next Articles
MA Xinna1,2*, ZHAO Men1,2, QI Lin1,2
CLC Number:
[1]余萍,曹洁.深度学习在故障诊断与预测中的应用[J].计算机工程与应用,2020,56(3):1-18. [2]赵志宏, 赵敬娇, 李晴,等. 基于一维密集连接卷积网络的故障诊断研究[J]. 西南大学学报(自然科学版), 2020,42(12):25-33. [3]蔺想红,王向文. 脉冲神经网络原理及应用[M]. 北京:科学出版社, 2018:9-10. [4]胡一凡, 李国齐, 吴郁杰,等. 脉冲神经网络研究进展综述[J]. 控制与决策, 2021,36(1):1-26. [5]ROY K, JAISWAL A, PANDA P. Towards spike-based machine intelligence with neuromorphic computing[J]. Nature,2019, 575(7784): 607-617. [6]SHEN J X , SHANG D S , CHAI Y S , et al. Mimicking synaptic plasticity and neural network using memtranstors[J]. Advanced Materials, 2018, 30(12):e1706717. [7]PRESCOTT S A, SEJNOWSKI T J. Spike-rate coding and spike-time coding are affected oppositely by different adaptation mechanisms[J]. Journal of Neuroscience, 2008, 28(50):13649-13661. [8]GAUTRAIS J, THORPE S. Rate coding versus temporal order coding: a theoretical approach[J]. Bio Systems, 1998, 48(1/2/3): 57-65. [9]VAN RULLEN R, THORPE S J. Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex[J]. Neural Computation, 2001, 13(6): 1255-1283. [10]LU T, LIANG L, WANG X. Temporal and rate representations of time-varying signals in the auditory cortex of awake primates[J]. Nature Neuroscience, 2001,4(11): 1131-1138. [11]ZUO L, ZHANG L, ZHANG Z H, et al. A spiking neural network-based approach to bearing fault diagnosis[J]. Journal of Manufacturing Systems, 2021,61: 714-724. [12]尚瑛杰,何虎,杨旭,等.仿生型脉冲神经网络学习算法和网络模型[J].计算机工程与设计,2020,41(5):1390-1397. [13]MASQUELIER T, THORPE S J. Learning to recognize objects using waves of spikes and spike timing-dependent plasticity[C]// The 2010 International Joint Conference on Neural Networks(IJCNN). Piscataway: IEEE, 2010: 1-8. [14]SENGUPTA A, YE Y T, WANG R, et al. Going deeper in spiking neural networks: VGG and residual architectures[J]. Frontiers in Neuroscience, 2019, 13: 95. [15]WU Y J, DENG L, LI G Q, et al. Direct training for spiking neural networks: faster, larger, better[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1):1311-1318. [16]WU Y J, DENG L, LI G Q, et al. Spatio-temporal backpropagation for training high-performance spiking neural networks[J]. Frontiers in Neuroscience, 2018, 12:331. [17]GU P J, XIAO R, PAN G, et al. STCA: Spatio-temporal credit assignment with delayed feedback in deep spiking neural networks[C]// Proceedings of 28th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 1366-1372. [18]GÜTIG R, SOMPOLINSKY H. The tempotron: a neuron that learns spike timing-based decisions[J]. Nature Neuroscience,2006, 9(3):420-428. [19]FANG H W, SHRESTHA A, ZHAO Z Y, et al. Exploiting neuron and synapse filter dynamics in spatial temporal learning of deep spiking neural network[C]// Proceeding of the Twenty-Ninth International Joint Conference on Artificial Intelligence. Yokohama: IJCAI, 2021: 2799-2806. [20]HAZAN H, SAUNDERS D J, KHAN H, et al. BindsNET: a machine learning-oriented spiking neural networks library in python[J]. Frontiers in Neuroinformatics, 2018, 12: 89. [21]MOZAFARI M, GANJTABESH M, NOWZARI-DALINI A, et al. SpykeTorch: efficient simulation of convolutional spiking neural networks with at most one spike per neuron[J]. Frontiers in Neuroscience, 2019, 13: 625. [22]肖雄,王健翔,张勇军,等. 一种用于轴承故障诊断的二维卷积神经网络优化方法[J]. 中国电机工程学报, 2019, 39(15): 4558-4568. [23]张伟. 基于卷积神经网络的轴承故障诊断算法研究[D]. 哈尔滨:哈尔滨工业大学,2017. [24]SCHRAUWEN B, VAN CAMPENHOUT J. BSA, a fast and accurate spike train encoding scheme[C]// Proceeding of the International Joint Conference on Neural Networks. Piscataway: IEEE, 2003: 2825-2830. [25]DELBRUCK T, LICHTSTEINER P. Fast sensory motor control based on event-based hybrid neuromorphic-procedural system[C]// 2007 IEEE International Symposium on Circuits and Systems. Piscataway: IEEE,2007:845-848. [26]RATHI N, SRINIVASAN G, PANDA P, et al. Enabling deep spiking neural networks with hybrid conversion and spike timing dependent backpropagation[J]. International Conference on Learning Representations. Addis Ababa: ICLR, 2020:1-11. [27]PETRO B, KASABOV N, KISS R M. Selection and optimization of temporal spike encoding methods for spiking neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(2):358-370. [28]杨琦,陈智才.基于EMD和相关系数法的列车滚动轴承故障诊断方法研究[J].电力机车与城轨车辆,2018,41(3):15-17,23. [29]李家宁,田永鸿.神经形态视觉传感器的研究进展及应用综述[J].计算机学报,2021,44(6):1258-1286. |
[1] | JIANG Rui, XU Juan, LI Qiang. A Prediction Method of Bearing Remaining Useful Life Based on Cross Domain Mean Approximation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 121-131. |
[2] | LIN Yue. The Fault Diagnosis of Charging Piles Based on Hybrid AP-HMM Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 25-33. |
|