Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (3): 112-120.doi: 10.16088/j.issn.1001-6600.2021070808

Previous Articles     Next Articles

Fault Diagnosis Based on Spiking Convolution Neural Network

MA Xinna1,2*, ZHAO Men1,2, QI Lin1,2   

  1. 1. School of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang Hebei 050043, China;
    2. State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures (Shijiazhuang Tiedao University), Shijiazhuang Hebei 050043, China
  • Received:2021-07-08 Revised:2021-09-09 Online:2022-05-25 Published:2022-05-27

Abstract: Deep learning provides ideas for the intelligent development of bearing fault diagnosis. From the perspective of brain-like computing, this paper designs spiking neural network sensitive to bearing data to complete the task of fault data classification. First, signal decomposition is used to improve the feature extraction effect of the original signal, and then the fault signal is spiking-encoded, and the time step is filled with multi-channel chaotic input as the input of the neural network. Finally, the Spiking convolutional neural network (SCNN) is used. In order to verify the classification effect of the model, a classification experiment is done on the CWRU bearing data set, and the classification accuracy rate reaches 99.78%. The results show that the bearing data encoding scheme can give full play to the spatiotemporal dynamic characteristics of the SNN, and the SNN model has the characteristics of high precision and high efficiency in bearing fault diagnosis. This research is helpful to promote the research and application of SNN in the field of fault diagnosis.

Key words: SNN, multimodal decomposition, rolling bearing, fault diagnosis, IIR filter

CLC Number: 

  • TP183
[1]余萍,曹洁.深度学习在故障诊断与预测中的应用[J].计算机工程与应用,2020,56(3):1-18.
[2]赵志宏, 赵敬娇, 李晴,等. 基于一维密集连接卷积网络的故障诊断研究[J]. 西南大学学报(自然科学版), 2020,42(12):25-33.
[3]蔺想红,王向文. 脉冲神经网络原理及应用[M]. 北京:科学出版社, 2018:9-10.
[4]胡一凡, 李国齐, 吴郁杰,等. 脉冲神经网络研究进展综述[J]. 控制与决策, 2021,36(1):1-26.
[5]ROY K, JAISWAL A, PANDA P. Towards spike-based machine intelligence with neuromorphic computing[J]. Nature,2019, 575(7784): 607-617.
[6]SHEN J X , SHANG D S , CHAI Y S , et al. Mimicking synaptic plasticity and neural network using memtranstors[J]. Advanced Materials, 2018, 30(12):e1706717.
[7]PRESCOTT S A, SEJNOWSKI T J. Spike-rate coding and spike-time coding are affected oppositely by different adaptation mechanisms[J]. Journal of Neuroscience, 2008, 28(50):13649-13661.
[8]GAUTRAIS J, THORPE S. Rate coding versus temporal order coding: a theoretical approach[J]. Bio Systems, 1998, 48(1/2/3): 57-65.
[9]VAN RULLEN R, THORPE S J. Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex[J]. Neural Computation, 2001, 13(6): 1255-1283.
[10]LU T, LIANG L, WANG X. Temporal and rate representations of time-varying signals in the auditory cortex of awake primates[J]. Nature Neuroscience, 2001,4(11): 1131-1138.
[11]ZUO L, ZHANG L, ZHANG Z H, et al. A spiking neural network-based approach to bearing fault diagnosis[J]. Journal of Manufacturing Systems, 2021,61: 714-724.
[12]尚瑛杰,何虎,杨旭,等.仿生型脉冲神经网络学习算法和网络模型[J].计算机工程与设计,2020,41(5):1390-1397.
[13]MASQUELIER T, THORPE S J. Learning to recognize objects using waves of spikes and spike timing-dependent plasticity[C]// The 2010 International Joint Conference on Neural Networks(IJCNN). Piscataway: IEEE, 2010: 1-8.
[14]SENGUPTA A, YE Y T, WANG R, et al. Going deeper in spiking neural networks: VGG and residual architectures[J]. Frontiers in Neuroscience, 2019, 13: 95.
[15]WU Y J, DENG L, LI G Q, et al. Direct training for spiking neural networks: faster, larger, better[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1):1311-1318.
[16]WU Y J, DENG L, LI G Q, et al. Spatio-temporal backpropagation for training high-performance spiking neural networks[J]. Frontiers in Neuroscience, 2018, 12:331.
[17]GU P J, XIAO R, PAN G, et al. STCA: Spatio-temporal credit assignment with delayed feedback in deep spiking neural networks[C]// Proceedings of 28th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 1366-1372.
[18]GÜTIG R, SOMPOLINSKY H. The tempotron: a neuron that learns spike timing-based decisions[J]. Nature Neuroscience,2006, 9(3):420-428.
[19]FANG H W, SHRESTHA A, ZHAO Z Y, et al. Exploiting neuron and synapse filter dynamics in spatial temporal learning of deep spiking neural network[C]// Proceeding of the Twenty-Ninth International Joint Conference on Artificial Intelligence. Yokohama: IJCAI, 2021: 2799-2806.
[20]HAZAN H, SAUNDERS D J, KHAN H, et al. BindsNET: a machine learning-oriented spiking neural networks library in python[J]. Frontiers in Neuroinformatics, 2018, 12: 89.
[21]MOZAFARI M, GANJTABESH M, NOWZARI-DALINI A, et al. SpykeTorch: efficient simulation of convolutional spiking neural networks with at most one spike per neuron[J]. Frontiers in Neuroscience, 2019, 13: 625.
[22]肖雄,王健翔,张勇军,等. 一种用于轴承故障诊断的二维卷积神经网络优化方法[J]. 中国电机工程学报, 2019, 39(15): 4558-4568.
[23]张伟. 基于卷积神经网络的轴承故障诊断算法研究[D]. 哈尔滨:哈尔滨工业大学,2017.
[24]SCHRAUWEN B, VAN CAMPENHOUT J. BSA, a fast and accurate spike train encoding scheme[C]// Proceeding of the International Joint Conference on Neural Networks. Piscataway: IEEE, 2003: 2825-2830.
[25]DELBRUCK T, LICHTSTEINER P. Fast sensory motor control based on event-based hybrid neuromorphic-procedural system[C]// 2007 IEEE International Symposium on Circuits and Systems. Piscataway: IEEE,2007:845-848.
[26]RATHI N, SRINIVASAN G, PANDA P, et al. Enabling deep spiking neural networks with hybrid conversion and spike timing dependent backpropagation[J]. International Conference on Learning Representations. Addis Ababa: ICLR, 2020:1-11.
[27]PETRO B, KASABOV N, KISS R M. Selection and optimization of temporal spike encoding methods for spiking neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(2):358-370.
[28]杨琦,陈智才.基于EMD和相关系数法的列车滚动轴承故障诊断方法研究[J].电力机车与城轨车辆,2018,41(3):15-17,23.
[29]李家宁,田永鸿.神经形态视觉传感器的研究进展及应用综述[J].计算机学报,2021,44(6):1258-1286.
[1] JIANG Rui, XU Juan, LI Qiang. A Prediction Method of Bearing Remaining Useful Life Based on Cross Domain Mean Approximation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 121-131.
[2] LIN Yue. The Fault Diagnosis of Charging Piles Based on Hybrid AP-HMM Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 25-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHEN Huiming, JIANG Xuankong, YANG Zizhong. Two New Species of the Genus Macrothele of China (Araneae, Macrothelidae)[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 114 -119 .
[2] AI Yan, JIA Nan, WANG Yuan, GUO Jing, PAN Dongdong. Review of Statistical Methods and Applications of Genetic Association Analysis for Multiple Traits and Multiple Locus[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 1 -14 .
[3] BAI Defa, XU Xin, WANG Guochang. Review of Generalized Linear Models and Classification for Functional Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 15 -29 .
[4] ZENG Qingfan, QIN Yongsong, LI Yufang. Empirical Likelihood Inference for a Class of Spatial Panel Data Models[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 30 -42 .
[5] ZHANG Zhifei, DUAN Qian, LIU Naijia, HUANG Lei. High-dimensional Nonlinear Regression Model Based on JMI[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 43 -56 .
[6] YANG Di, FANG Yangxin, ZHOU Yan. New Category Classification Research Based on MEB and SVM Methods[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 57 -67 .
[7] CHEN Zhongxiu, ZHANG Xingfa, XIONG Qiang, SONG Zefang. Estimation and Test for Asymmetric DAR Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 68 -81 .
[8] DU Jinfeng, WANG Hairong, LIANG Huan, WANG Dong. Progress of Cross-modal Retrieval Methods Based on Representation Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 1 -12 .
[9] LI Muhang, HAN Meng, CHEN Zhiqiang, WU Hongxin, ZHANG Xilong. Survey of Algorithms Oriented to Complex High Utility Pattern Mining[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 13 -30 .
[10] CHAO Rui, ZHANG Kunli, WANG Jiajia, HU Bin, ZHANG Weicong, HAN Yingjie, ZAN Hongying. Construction of Chinese Multimodal Knowledge Base[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 31 -39 .