Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (6): 87-98.doi: 10.16088/j.issn.1001-6600.2020111402

Previous Articles     Next Articles

A Web Service Classification Method Using BERT and DPCNN

LU Kaifeng1, YANG Yilong2, LI Zhi1*   

  1. 1. School of Computer Science and Engineering, Guangxi Normal University, Guilin Guangxi 541004, China;
    2. School of Software, Beihang University, Beijing 100191, China
  • Received:2020-11-14 Revised:2021-04-08 Online:2021-11-25 Published:2021-12-08

Abstract: Web Services is an application based on the Web environment with self-adaptation, self-description, modularization, and interoperability. These features make it extremely reusable. Software reuse is a promising method to reduce software development costs. The automatic classification of Web services plays a vital role in software reuse. In recent years, machine learning techniques are widely used in service classification and have achieved some results. But the performance of traditional machine learning methods highly depends on the quality of feature engineering. This paper proposes a Bert DPCNN deep neural network model, which is based on the combination of Bert pre-training model and DPCNN deep pyramid convolutional neural network. This model can automatically extract low-level representations of service descriptions and abstract them into high-level features without feature engineering. In order to demonstrate the effectiveness of the proposed method, a comprehensive comparison is made with the traditional machine learning method and some deep neural network models on the datasets of 50 categories and 10 184 real Web services. The results show that the proposed model has higher accuracy rate than the other methods.

Key words: Web services, software reuse, machine learning, deep learning, BERT, DPCNN

CLC Number: 

  • TP183
[1] YANG Y L, ZU Q, LIU P, et al. Microshare: privacy-preserved medical resource sharing through microservice architecture[J]. International Journal of Biological Sciences, 2018, 14(8): 907-919. DOI:10.7150/ijbs.24617.
[2] 童红霞, 曹健, 张申生, 等. 面向服务的Agent模型研究[J]. 广西师范大学学报(自然科学版), 2008, 26(2): 110-113. DOI:10.3969/j.issn.1001-6600.2008.02.028.
[3] YANG Y L, LI X S, QAMAR N, et al. Medshare: a novel hybrid cloud for medical resource sharing among autonomous healthcare providers[J]. IEEE Access, 2018, 6: 46949-46961. DOI:10.1109/ACCESS.2018.2865535.
[4] HAJLAOUI J E, OMRI M N, BENSLIMANE D, et al. QoS based framework for configurable IaaS cloud services discovery[C]//2017 IEEE International Conference on Web Services (ICWS). Los Alamitos, CA: IEEE Computer Society, 2017: 460-467. DOI:10.1109/ICWS.2017.53.
[5] HASSELMEYER P. On service discovery process types[C]//Service-Oriented Computing-ICSOC 2005: LNCS Volume 3826. Berlin: Springer, 2005: 144-156. DOI:10.1007/11596141_1.
[6] CHENG B, ZHAO S, LI C B, et al. MISDA: web services discovery approach based on mining interface semantics[C]//2016 IEEE International Conference on Web Services (ICWS). Los Alamitos, CA: IEEE Computer Society, 2016: 332-339. DOI:10.1109/ICWS.2016.50.
[7] YANG Y L, YANG J, LI X S, et al. An integrated framework for semantic service composition using answer set programming[J]. International Journal of Web Services Research, 2014, 11(4): 47-61. DOI:10.4018/IJWSR. 2014100104.
[8] FANG L, WANG L J, LI M, et al. Towards automatic tagging for web services[C]//2012 IEEE 19th International Conference on Web Services. Los Alamitos, CA: IEEE Computer Society, 2012: 528-535. DOI:10.1109/ICWS.2012.99.
[9] KATAKIS I, MEDITSKOS G, TSOUMAKAS G, et al. On the combination of textual and semantic descriptions for automated semantic web service classification[C]//Artificial Intelligence Applications and Innovations III: Proceedings of the 5TH IFIP Conference on Artificial Intelligence Applications and Innovations (AIAI’2009). Boston, MA: Springer, 2009: 95-104. DOI:10.1007/978-1-4419-0221-4_13.
[10] WANG H B, SHI Y Q, ZHOU X, et al. Web service classification using support vector machine[C]//2010 22nd IEEE International Conference on Tools with Artificial Intelligence: Volume 1. Los Alamitos, CA: IEEE Computer Society, 2010: 3-6. DOI:10.1109/ICTAI.2010.9.
[11] SU J, SAYYAD-SHIRABAD J, MATWIN S. Large scale text classification using semi-supervised multinomial naive bayes[C]//Proceedings of the 28th International Conference on International Conference on Machine Learning. Madison, WI: Omnipress, 2011: 97-104.
[12] ZHANG P Y, SHU S, ZHOU M C. An online fault detection model and strategies based on SVM-grid in clouds[J]. IEEE/CAA Journal of Automatica Sinica, 2018, 5(2): 445-456. DOI:10.1109/JAS.2017.7510817.
[13] ALMALAWI A M, FAHAD A, TARI Z, et al. kNNVWC: an efficient k-nearest neighbors approach based on various-widths clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(1): 68-81. DOI:10.1109/TKDE. 2015.2460735.
[14] MALIAH S, SHANI G. MDP-based cost sensitive classification using decision trees[C]//The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18). Palo Alto, CA: AAAI Press, 2018: 3746-3753.
[15] KAPITSAKI G M. Annotating web service sections with combined classification[C]//2014 IEEE International Conference on Web Services. Los Alamitos, CA: IEEE Computer Society, 2014: 622-629. DOI:10.1109/ICWS.2014.92.
[16] LIU X M, AGARWAL S, DING C, et al. An LDA-SVM active learning framework for web service classification[C]//2016 IEEE International Conference on Web Services (ICWS). Los Alamitos, CA: IEEE Computer Society, 2016: 49-56. DOI:10.1109/ICWS.2016.16.
[17] CONG Y L, CHEN B, LIU H W, et al. Deep latent Dirichlet allocation with topic-layer-adaptive stochastic gradient Riemannian MCMC[EB/OL]. (2017-06-06)[2020-11-14]. https://arxiv.org/pdf/1706.01724.
[18] LIANG T T, CHEN L, WU J, et al. Exploiting heterogeneous information for tag recommendation in API management[C]//2016 IEEE International Conference on Web Services (ICWS). Los Alamitos, CA: IEEE Computer Society, 2016: 436-443. DOI:10.1109/ICWS.2016.63.
[19] SHI W S, LIU X M, YU Q. Correlation-aware multi-label active learning for web service tag recommendation[C]//2017 IEEE International Conference on Web Services (ICWS). Los Alamitos, CA: IEEE Computer Society, 2017: 229-236. DOI:10.1109/ICWS.2017.37.
[20] 陈婷, 刘建勋, 曹步清, 等. 基于BTM主题模型的Web服务聚类方法研究[J]. 计算机工程与科学, 2018, 40(10): 1737-1745. DOI:10.3969/j.issn.1007-130X.2018.10.004.
[21] YAN X H, GUO J F, LAN Y Y, et al. A biterm topic model for short texts[C]//WWW′13: Proceedings of the 22nd International Conference on World Wide Web. New York, NY: Association for Computing Machinery, 2013: 1445-1456. DOI:10.1145/2488388.2488514.
[22] 石敏, 刘建勋, 周栋, 等. 基于多重关系主题模型的Web服务聚类方法[J]. 计算机学报, 2019, 42(4): 820-836. DOI:10.11897/SP.J.1016.2019.00820.
[23] 曹步清, 肖巧翔, 张祥平, 等. 融合SOM功能聚类与DeepFM质量预测的API服务推荐方法[J]. 计算机学报, 2019, 42(6): 1367-1383. DOI:10.11897/SP.J.1016.2019.01367.
[24] KOHONEN T. The self-organizing map[J]. Proceedings of the IEEE, 1990, 78(9): 1464-1480. DOI:10.1109/5.58325.
[25] BENGIO Y, COURVILLE A, VINCENT P. Representation learning: a review and new perspectives[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(8): 1798-1828. DOI:10.1109/TPAMI.2013.50.
[26] GOODFELLOWI, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge, MA: MIT Press, 2016.
[27] YANG Y L, KE W, WANG W R, et al. Deep learning for web services classification[C]//2019 IEEE International Conference on Web Services (ICWS). Los Alamitos, CA: IEEE Computer Society, 2019: 440-442. DOI:10.1109/ICWS. 2019.00079.
[28] 岳天驰, 张绍武, 杨亮, 等. 基于两阶段注意力机制的立场检测方法[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 42-49. DOI:10.16088/j.issn.1001-6600.2019.01.005.
[29] 武文雅, 陈钰枫, 徐金安, 等. 基于高层语义注意力机制的中文实体关系抽取[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 32-41. DOI:10.16088/j.issn.1001-6600.2019.01.004.
[30] 刘恒讯, 艾中良. 一种基于词向量的恶意代码分类模型[J]. 电子设计工程, 2020, 28(6): 10-16. DOI:10.14022/j.issn1674-6236.2020.06.003.
[31] DEVLIN J, CHANG M W, LEE K, et al. Bert: pre-training of deep bidirectional transformers for language understanding[EB/OL]. (2018-10-11)[2020-11-14]. https://arxiv.org/pdf/1810.04805.
[32] JOHNSON R, ZHANG T. Deep pyramid convolutional neural networks for text categorization[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2017: 562-570. DOI:10.18653/v1/P17-1052.
[33] HAGHIRI S, GARREAU D, VON LUXBURG U. Comparison-based random forests[EB/OL]. (2018-06-18)[2020-11-14]. https://arxiv.org/pdf/1806.06616.
[1] LI Bing, LI Zhi, YANG Yilong. Classification of Non-Functional Software Requirements Using Word Embeddings and Long Short-Term Memory [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 110-121.
[2] WU Lingyu, LAN Yang, XIA Haiying. Retinal Image Registration Using Convolutional Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 122-133.
[3] CHEN Wenkang, LU Shenglian, LIU Binghao, LI Guo, LIU Xiaoyu, CHEN Ming. Real-time Citrus Recognition under Orchard Environment by Improved YOLOv4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 134-146.
[4] YANG Zhou, FAN Yixing, ZHU Xiaofei, GUO Jiafeng, WANG Yue. Survey on Modeling Factors of Neural Information Retrieval Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 1-12.
[5] DENG Wenxuan, YANG Hang, JIN Ting. A Dimensionality-reduction Method Based on Attention Mechanismon Image Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 32-40.
[6] XUE Tao, QIU Senhui, LU Hao, QIN Xingsheng. Exchange Rate Prediction Based on Empirical Mode Decomposition and Multi-branch LSTM Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 41-50.
[7] TANG Rongchai, WU Xiru. Real-time Detection of Passion Fruit Based on Improved YOLO-V3 Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 32-39.
[8] ZHANG Mingyu,ZHAO Meng,CAI Fuhong,LIANG Yu,WANG Xinhong. Wave Power Prediction Based on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 25-32.
[9] ZHANG Yongsheng, ZHU Wenjun, SHI Ruoqi, DU Zhenhua, ZHANG Rui, WANG Zhi. A Confidence-guided Hybrid Android Malware DetectionSystem with Multiple Heterogeneous Algorithms [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 19-28.
[10] LI Weiyong, LIU Bin, ZHANG Wei, CHEN Yunfang. An Automatic Summarization Model Based on Deep Learning for Chinese [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 51-63.
[11] LIU Yingxuan, WU Xiru, XUE Ganggang. Multi-target Real-time Detection for Road Traffic SignsBased on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 96-106.
[12] ZHANG Jinlei, LUO Yuling, FU Qiang. Predicting Financial Time Series Based on Gated Recurrent Unit Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 82-89.
[13] HUANG Liming,CHEN Weizheng,YAN Hongfei,CHEN Chong. A Stock Prediction Method Based on Recurrent Neural Network and Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 13-22.
[14] YUE Tianchi, ZHANG Shaowu, YANG Liang, LIN Hongfei, YU Kai. Stance Detection Method Based on Two-Stage Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 42-49.
[15] YU Chuanming,LI Haonan,AN Lu. Analysis of Text Emotion Cause Based on Multi-task Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 50-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[2] WU Kangkang, ZHOU Peng, LU Ye, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang. FIR Equalizer Based on Mini-batch Gradient Descent Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 9 -20 .
[3] LIU Dong, ZHOU Li, ZHENG Xiaoliang. A Very Short-term Electric Load Forecasting Based on SA-DBN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 21 -33 .
[4] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34 -46 .
[5] WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47 -54 .
[6] LU Miao, HE Dengxu, QU Liangdong. Grey Wolf Optimization Algorithm Based on Elite Learning for Nonlinear Parameters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 55 -67 .
[7] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68 -78 .
[8] LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79 -92 .
[9] ZHAO Hongtao, LIU Zhiwei. Decompositions of λ-fold Complete Bipartite 3-uniform Hypergraphs λK(3)n,n into Hypergraph Triangular Bipyramid[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 93 -98 .
[10] LI Meng, CAO Qingxian, HU Baoqing. Spatial-temporal Analysis of Continental Coastline Migration from 1960 to 2018 in Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 99 -108 .