Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (3): 122-130.doi: 10.16088/j.issn.1001-6600.2020033103

Previous Articles     Next Articles

Variation of Soil Temperature and Moistureat Different Successional Stages of Loropetalum chinense Communities in Karst Hills of Guilin, China

MO Yanhua1,2,3, ZOU Han1,3, MA Jiangming1,2,3*, LI Yufeng1,2,3, JIAN Rui1,2,3, QIN Jiashuang1,2,3, SONG Zunrong1,2,3, LIN Zhengzhong1,3   

  1. 1. Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin Guangxi 541006, China;
    2. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    3. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2020-03-31 Revised:2020-10-25 Published:2021-05-13

Abstract: Analyzsis of the variation of soil temperature and moisture at different successional stages of Loropetalum chinense communities in karst hills of Guilin is a key basis for the understanding of the successional laws of L. chinense natural forests in karst hills of Guilin. The soil temperature and moisture sensors EM50 were used to continuously monitor temperature and humidity in different soil layers (0, 5 and 10 cm) of shrub stage, shrub to tree stage and small tree stage of L. chinense communities in karst hills of Guilin between March 2017 and February 2018. The variation of soil temperature and moisture at the three successional stages were analyzed. The study results indicated that, (1) The diurnal variation curve of soil temperature in different seasons showed the same sinusoidal curve in each soil layer at different successional stages of L. chinense communities. Except in summer, the diurnal variation of soil moisture was relatively stable. (2) The soil temperature of each soil layer reached the highest temperature in August (25.55±0.66—26.75±0.72 ℃) and the lowest temperature in January (9.13±2.82—11.04±1.90 ℃) at different successional stages, respectively. The soil moisture of each soil layer reached the maximum value from June to July (28.19%±1.99%—36.06%±3.86%) and minimum value from October to November (10.97%±1.09%—18.26%±0.44%). (3) The soil temperature of each soil layer decreased with succession in each month at different successional stages of L. chinense communities. And soil moisture of 0 cm layer increased with succession at different successional stages of L. chinense communities. In the deep soil layers, soil moisture didn’t show a obvious trend along the successional gradient of L. chinense communities. To sum up, the soil environment gradually recovered from high temperature and low humidity to low temperature and high humidity trend along the successional gradient of L. chinense communites. The results provide a theoretical basis for the synergy of natural succession development and environmental factors of L. chinense communities in karst hills of Guilin, China.

Key words: soil temperature and moisture, succession, Loropetalum chinense communities, karst hills of Guilin

CLC Number: 

  • S714.2
[1]MANABE S, DELWORTH T. The temporal variability of soil wetness and its impact on climate[J]. Climatic Change, 1990, 16(2): 185-192. DOI:10.1007/BF00134656.
[2]RUMPEL C. Soils linked to climate change[J]. Nature, 2019, 572(7770): 442-443. DOI:10.1038/d41586-019-02450-6.
[3]刘效东, 周国逸, 陈修治, 等. 南亚热带森林演替过程中小气候的改变及对气候变化的响应[J]. 生态学报, 2014, 34(10): 2755-2764. DOI:10.5846/stxb201307231934.
[4]程志刚, 刘晓东, 范广洲, 等. 21世纪青藏高原气候时空变化评估[J]. 干旱区研究, 2011, 28(4): 669-676. DOI:10.13866/j.azr.2011.04.021.
[5]PORPORATO A, D'ODORICO P, LAIO F, et al. Ecohydrology of water-controlled ecosystems[J]. Advances in Water Resources, 2002, 25(8/9/10/11/12): 1335-1348. DOI:10.1016/S0309-1708(02)00058-1.
[6]王玉娟, 杨胜天, 温志群, 等. 贵州典型喀斯特灌丛草坡类型区土壤水分及其影响因子研究[J]. 北京师范大学学报(自然科学版) , 2008, 44(5): 529-532. DOI:10.3321/j.issn:0476-0301.2008.05.020.
[7]邓艳, 蒋忠诚, 李先琨, 等. 广西弄岗不同演替阶段植被群落的小气候特征[J]. 热带地理, 2004, 24(4): 316-320, 325. DOI:10.13284/j.cnki.rddl.000850.
[8]俞国松, 王世杰, 容丽. 茂兰喀斯特森林演替阶段不同小生境的小气候特征[J]. 地球与环境, 2011, 39(4): 469-477. DOI:10.14050/j.cnki.1672-9250.2011.04.005.
[9]覃家科, 李先琨, 吕仕洪, 等. 广西马山岩溶山地植被恢复过程的种类更替与小气候动态[J]. 广西科学, 2005, 12(2): 146-151. DOI:10.13656/j.cnki.gxkx.2005.02.018.
[10]甘磊, 郑思文, 黄太庆, 等. 桂林喀斯特地区干湿循环过程中土壤水含量的空间变异[J]. 南方农业学报, 2017, 48(9): 1587-1593. DOI:10.3969/j.issn.2095-1191.2017.09.08.
[11]张雅君, 马姜明, 苏静, 等. 喀斯特石山克隆生长红背山麻杆的生理响应及耐受性评价[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 151-158. DOI:10.16088/j.issn.1001-6600.2018.04.019.
[12]张川, 陈洪松, 聂云鹏, 等. 喀斯特地区洼地剖面土壤含水率的动态变化规律[J]. 中国生态农业学报, 2013, 21(10): 1225-1232. DOI:10.3724/SP.J.1011.2013.30291.
[13]李先琨, 何成新, 唐建生, 等. 广西岩溶山地生态系统特征与恢复重建[J]. 广西科学, 2008, 15(1): 80-86, 91. DOI:10.13656/j.cnki.gxkx.2008.01.015.
[14]陈海存, 李晓东, 李凤霞, 等. 黄河源玛多县退化草地土壤温湿度变化特征[J]. 干旱区研究, 2013, 30(1): 35-40. DOI:10.13866/j.azr.2013.01.007.
[15]马姜明, 占婷婷, 莫祖英, 等. 漓江流域岩溶区檵木群落不同恢复阶段主要共有种生态位变化[J]. 西北植物学报, 2012, 32(12): 2530-2536. DOI:10.3969/j.issn.1000-4025.2012.12.024.
[16]马姜明, 吴蒙, 占婷婷, 等. 漓江流域岩溶区檵木群落不同恢复阶段物种组成及多样性变化[J]. 生态环境学报, 2013, 22(1): 66-71. DOI:10.16258/j.cnki.1674-5906.2013.01.002.
[17]覃扬浍, 马姜明, 梅军林, 等. 漓江流域岩溶区檵木群落不同恢复阶段凋落物分解初期动态[J]. 生态学报, 2017, 37(20): 6792-6799. DOI:10.5846/stxb201606291301.
[18]苏静, 马姜明, 覃扬浍, 等. 桂林岩溶石山檵木群落不同恢复阶段凋落物层酶对凋落物分解的影响[J]. 广西植物, 2019, 39(2): 170-177. DOI:10.11931/guihaia.gxzw201801025.
[19]张雅君, 马姜明, 苏静, 等. 桂林岩溶石山檵木群落不同恢复阶段地上生物量模型构建及分配格局[J]. 广西植物, 2019, 39(2): 161-169. DOI:10.11931/guihaia.gxzw201801010.
[20]莫燕华, 马姜明, 苏静, 等. 桂林岩溶石山檵木群落老龄林植物叶性状[J]. 广西植物, 2019, 39(8): 1059-1068. DOI:10.11931/guihaia.gxzw201809005.
[21]LIU X S, LUO T X. Spatiotemporal variability of soil temperature and moisture across two contrasting timberline ecotones in the Sergyemla Mountains, southeast Tibet[J]. Arctic Antarctic and Alpine Research, 2011, 43(2): 229-238. DOI:10.1657/1938-4246-43.2.229.
[22]俞洁辉, 刘新圣, 罗天祥, 等. 念青唐古拉山北麓草甸海拔分布上限土壤温湿度的季节变化[J]. 地理学报, 2012, 67(9): 1246-1254. DOI:10.11821/xb201209009.
[23]付皓宇, 井长青, 郭文章, 等. 准噶尔盆地南缘荒漠草地土壤温、湿度分层变化特征[J]. 草业科学, 2020, 37(6): 1035-1046. DOI:10.11829/j.issn.1001-0629.2019-0567.
[24]李雪琴, 鲁旭阳, 范继辉, 等. 藏东南不同下垫面栽培草地土壤温湿度的特征分析[J]. 草业科学, 2020, 7(7): 1227-1238. DOI:10.11829/j.issn.1001-0629.2020-0105.
[25]陈超, 周广胜. 1961—2010年桂林气温和地温的变化特征[J]. 生态学报, 2013, 33(7): 2043-2053. DOI:10.5846/stxb201112312022.
[26]韩璐, 陈辉, 陈同同, 等. 柴达木盆地土壤温湿度变化特征及相关关系分析[J]. 水土保持研究, 2016, 23(6): 166-173. DOI:10.13869/j.cnki.rswc.2016.06.021.
[27]杨丹, 孙永涛, 庄家尧, 等. 长三角区典型林分浅层土壤温度变化特征[J]. 中国水土保持科学, 2017, 15(3): 65-73. DOI:10.16843/j.sswc.2017.03.009.
[28]巩玉玲, 王兆锋, 张镱锂, 等. 拉萨灌丛草甸区土壤温度变化特征[J]. 土壤学报, 2016, 53(2): 411-420. DOI:10.11766/ trxb201508180309.
[29]庄家尧, 葛波, 杜妍, 等. 南京城郊麻栎林林内外温湿度变化特征[J]. 浙江农林大学学报, 2019, 36(1): 62-69. DOI:10.11833/j.issn.2095-0756.2019.01.009.
[30]李晖, 翟禄新, 王月, 等. 桂林市近56年降水结构的时间变化分析[J]. 广西科学, 2013, 20(2): 111-114, 120. DOI:10.13656/j.cnki.gxkx.2013.02.025.
[31]李洁, 刘芝芹, 杨旭, 等. 滇中高原森林生态站冬春季森林小气候特征研究[J]. 西南林业大学学报(自然科学), 2020, 40(4): 28-36. DOI:10.11929/j.swfu.201909082.
[1] TANG Dandan, MA Jiangming, LI Haixia. Flora of Vascular Plant in Fengshui Woods on Karst Hills of Guilin [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 126-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Weiqi, JIN Wenzhou, HUANG Jingxiang, HAN Bowen. Pricing Problem of Customized Bus under Different Market Strategies[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 8 -17 .
[2] MA Fuhua, LU Zhenkun. Parameter Resolution Analysis of Gaussian Model of Ultrasonic Signal Based on Fuzzy Function[J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 26 -31 .
[3] XU Qin, MA Chaomei, RAO Weiwen, DENG Lidong. Quantification of Twelve Constituents in the Extracts of Folium ficim icrocarpaeby Ultra-performence Liquid Chromatography-Quadropole Mass Spectrometry[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 80 -86 .
[4] XU Shihao,FANG Zhigang,HAN Jianming,ZHAO Zhenning,CHEN Lin,LIU Qi. Bonding and Magnetic Properties of Cluster V3B2[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 89 -96 .
[5] CHEN Si-yuan, YANG Yang, PENG Yan, LIU Yan-cheng. Crystal Structure and Antitumor Activity of a New Schiff Base Palladium Complex[J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(2): 81 -86 .
[6] LIU Zhao-hui, LU Yong-bin, ZHANG Qi-wei, LIU Yan-hua, TANG Shao-Qing. Fine-scale Spatial Genetic Structure Analysis of Abies ziyuanesis Population in Dayuan,Hunan,China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 140 -144 .
[7] MENG Xiu-jin, YANG Da, JIANG Yi-min. Synthesis and Structure of (Pyrazin-2-ylsulfanyl)-Acetic Acid[J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(1): 67 -70 .
[8] PAN Xiaomei, LI Mingjin, YANG Zhangqi, MA Jiangming, LING Tianwang, YAN Peidong. Study on Undergrowth Flora of Pinus massoniana Plantations with Four Different Forest Ages in Southern Subtropical Area of Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 136 -143 .
[9] GUO Junliang, XUE Fei, LIU Xuan, HOU Rong, WU Wei, LI Dayong, QI Dunwu, ZHANG Zhihe. Study on the Rhythm Characteristics of Giant Panda Twins[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 127 -132 .
[10] WANG Junjie, WEN Xueyan, XU Kesheng, YU Ming. An Improved Stack Algorithm Based on Local Sensitive Hash[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 21 -31 .