Journal of Guangxi Normal University(Natural Science Edition) ›› 2019, Vol. 37 ›› Issue (1): 13-22.doi: 10.16088/j.issn.1001-6600.2019.01.002
Previous Articles Next Articles
HUANG Liming1,CHEN Weizheng1,YAN Hongfei1*,CHEN Chong2
CLC Number:
[1] ADAM K, MARCET A, NICOLINI J P. Stock market volatility and learning[J]. The Journal of Finance, 2016, 71: 33-82. DOI: 10.1111/jofi.12364. [2] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-44. DOI: 10.1038/nature14539. [3] SI Y W, YIN J. OBST-based segmentation approach to financial time series[J]. Engineering Applications of Artificial Intelligence, 2013, 26(10): 2581-2596. DOI: 10.1016/j.engappai.2013.08.015. [4] FAMA E F. The Behaviour of stock market prices[J]. Journal of Business, 1965, 38(1):34-105. DOI:10.1086/294743. [5] XIE H, BIAN J, WANG M, et al. Is technical analysis informative in UK stock market? Evidence from decomposition-based vector autoregressive (DVAR) model[J]. Journal of Systems Science and Complexity, 2014, 27(1):144-156. DOI: 10.1007/s11424-014-3280-9. [6] LI L L, LENG S, YANG J, et al. Stock market autoregressive dynamics: A multinational comparative study with quantile regression[J]. Mathematical Problems in Engineering, 2016(1): 1-15. DOI: 10.1155/2016/1285768. [7] RUIZ E J, HRISTIDIS V, CASTILLO C, et al. Correlating financial time series with micro-blogging activity[C] // Proceedings of the fifth ACM international conference on Web search and data mining. New York: ACM, 2012: 513-522. DOI: 10.1145/2124295.2124358. [8] BRACHMAN R J, KHABAZA T, KLOESGEN W, et al. Mining business databases[J]. Communications of the ACM, 1996, 39(11): 42-48. DOI: 10.1145/240455.240468. [9] HARRIS Z S. Distributional structure[J]. Word, 1954,10(2-3):146-162. DOI: 10.1080/00437956.1954.11659520. [10] BÜHLER K. Sprachtheorie: Theory of language[M]. Oxford, England: Fischer, 1934. [11] SOWA J F. Semantic networks[EB/OL]. (2015-03-02)[2018-10-14]. http://www.jfsowa.com/pubs/semnet.htm. [12] CHOMSKY N. Three models for the description of language[J]. IRE , Transactions on Information Theory, 1956, 2(3):112-124. DOI: 10.1109/TIT.1956.1056813. [13] CAMBRIA E. An introduction to concept-level sentiment analysis[C]//Mexican International Conference on Artificial Intelligence. Berlin: Springer, 2013: 478-483. DOI: 10.1007/978-3-642-45111-9_41. [14] RILOFF E, SHEPHERD J. A corpus-based approach for building semantic lexicons[EB/OL]. (1997-06-10) [2018-10-14]. https://arXiv.org/abs/cmp-lg/9706013. [15] SUN R, ZHANG Y, ZHANG M, et al. Event-driven headline generation[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2015: 462-472. [16] DING X, ZHANG Y, LIU T, et al. Deep learning for event-driven stock prediction[C]//International Conference on Artificial Intelligence. Argentina: AAAI, 2015: 2327-2333. [17] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[J]. Advances in Neural Information Processing Systems, 2013:3111-3119. [18] PENNINGTON J, SOCHER R, MANNING C D. Glove: Global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg: ACL, 2014: 1532-1543. [19] JOULIN A, GRAVE E, BOJANOWSKI P, et al. Bag of tricks for efficient text classification[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers. Stroudsburg: ACL, 2017: 427-431. [20] SCHUSTER M, PALIWAL K P. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11):2673-2681. DOI: 10.1109/78.650093. [21] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. [22] ZHANG L, AGGARWAL C, QI G. Stock price prediction via discovering multi-frequency trading patterns[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2017: 2141-2149. [23] GAO Q. Stock market forecasting using recurrent neural network[D]. Columbia: University of Missouri-Columbia, 2016. [24] RATHER A M, AGARWAL A, SASTRY V N. Recurrent neural network and a hybrid model for prediction of stock returns[J]. Expert Systems with Applications, 2015, 42(6): 3234-3241. [25] ALTHELAYA K A, El-ALFY E M, MOHAMMED S. Evaluation of bidirectional LSTM for short-and long-term stock market prediction[C]//2018 9th International Conference on Information and Communication Systems (ICICS), [S. l.:s. n.], 2018: 151-156. [26] ZHANG Z, CHEN W, YAN H. Stock prediction: a method based on extraction of news features and recurrent neural networks[EB/OL].(2017-07-19) [2018-10-14]. https://arXiv.org/abs/1707.07585v1. [27] OLAH C. Understanding LSTM networks[EB/OL]. (2015-08-27)[2018-10-14]. http://colah.github.io/posts/2015-08-Understanding-LSTMs/. [28] KINGMA D P, BA L J. Adam: A method for stochastic optimization[EB/OL].(2014-12-22) [2018-10-14]. https://arXiv.org/abs/1412.6980v1. [29] ABADI M, AGARWAL A, BARHAM P, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems[EB/OL]. (2016-03-14) [2018-10-14]. https://arXiv.org/abs/1603.04467v1. [30] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg: ACL, 2014: 1746-1751. |
[1] | ZHANG Mingyu,ZHAO Meng,CAI Fuhong,LIANG Yu,WANG Xinhong. Wave Power Prediction Based on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 25-32. |
[2] | LI Weiyong, LIU Bin, ZHANG Wei, CHEN Yunfang. An Automatic Summarization Model Based on Deep Learning for Chinese [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 51-63. |
[3] | LIU Yingxuan, WU Xiru, XUE Ganggang. Multi-target Real-time Detection for Road Traffic SignsBased on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 96-106. |
[4] | ZHANG Jinlei, LUO Yuling, FU Qiang. Predicting Financial Time Series Based on Gated Recurrent Unit Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 82-89. |
[5] | YUE Tianchi, ZHANG Shaowu, YANG Liang, LIN Hongfei, YU Kai. Stance Detection Method Based on Two-Stage Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 42-49. |
[6] | YU Chuanming,LI Haonan,AN Lu. Analysis of Text Emotion Cause Based on Multi-task Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 50-61. |
[7] | WANG Qi,QIU Jiahui,RUAN Tong,GAO Daqi,GAO Ju. Recurrent Capsule Network for Clinical Relation Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 80-88. |
[8] | ZHAO Hui-wei, LI Wen-hua, FENG Chun-hua, LUO Xiao-shu. Periodic Oscillation Analysis for a Recurrent Neural NetworksModel with Time Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 29-34. |
|