Journal of Guangxi Normal University(Natural Science Edition) ›› 2019, Vol. 37 ›› Issue (1): 13-22.doi: 10.16088/j.issn.1001-6600.2019.01.002

Previous Articles     Next Articles

A Stock Prediction Method Based on Recurrent Neural Network and Deep Learning

HUANG Liming1,CHEN Weizheng1,YAN Hongfei1*,CHEN Chong2   

  1. 1. School of Computer Science and Technology, Peking University, Beijing 100871, China;
    2. School of Government, Beijing Normal University, Beijing 100875, China
  • Received:2018-10-14 Published:2019-01-08

Abstract: A stock prediction method based on multiple recurrent neural network and deep learning is proposed in this paper. Aiming at predicting the rise and fall of stocks, the method in this paper extracts the features of news corpus information by distributed vector representation methods. Considering the natural of time-series stock related information and the persistence of news impact, multiple recurrent neural networks are used to collaborate process the features and stock trading information to obtain the history information embedding. Finally, the outputs of all recurrent neural networks are concatenated together to predict a stock. The data of Shanghai A-share market stock are used to do case study, which indicates that our method significantly outperforms the other baselines.

Key words: stock prediction, recurrent neural network, deep learning, long short term memory

CLC Number: 

  • TP181
[1] ADAM K, MARCET A, NICOLINI J P. Stock market volatility and learning[J]. The Journal of Finance, 2016, 71: 33-82. DOI: 10.1111/jofi.12364.
[2] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-44. DOI: 10.1038/nature14539.
[3] SI Y W, YIN J. OBST-based segmentation approach to financial time series[J]. Engineering Applications of Artificial Intelligence, 2013, 26(10): 2581-2596. DOI: 10.1016/j.engappai.2013.08.015.
[4] FAMA E F. The Behaviour of stock market prices[J]. Journal of Business, 1965, 38(1):34-105. DOI:10.1086/294743.
[5] XIE H, BIAN J, WANG M, et al. Is technical analysis informative in UK stock market? Evidence from decomposition-based vector autoregressive (DVAR) model[J]. Journal of Systems Science and Complexity, 2014, 27(1):144-156. DOI: 10.1007/s11424-014-3280-9.
[6] LI L L, LENG S, YANG J, et al. Stock market autoregressive dynamics: A multinational comparative study with quantile regression[J]. Mathematical Problems in Engineering, 2016(1): 1-15. DOI: 10.1155/2016/1285768.
[7] RUIZ E J, HRISTIDIS V, CASTILLO C, et al. Correlating financial time series with micro-blogging activity[C] // Proceedings of the fifth ACM international conference on Web search and data mining. New York: ACM, 2012: 513-522. DOI: 10.1145/2124295.2124358.
[8] BRACHMAN R J, KHABAZA T, KLOESGEN W, et al. Mining business databases[J]. Communications of the ACM, 1996, 39(11): 42-48. DOI: 10.1145/240455.240468.
[9] HARRIS Z S. Distributional structure[J]. Word, 1954,10(2-3):146-162. DOI: 10.1080/00437956.1954.11659520.
[10] BÜHLER K. Sprachtheorie: Theory of language[M]. Oxford, England: Fischer, 1934.
[11] SOWA J F. Semantic networks[EB/OL]. (2015-03-02)[2018-10-14]. http://www.jfsowa.com/pubs/semnet.htm.
[12] CHOMSKY N. Three models for the description of language[J]. IRE , Transactions on Information Theory, 1956, 2(3):112-124. DOI: 10.1109/TIT.1956.1056813.
[13] CAMBRIA E. An introduction to concept-level sentiment analysis[C]//Mexican International Conference on Artificial Intelligence. Berlin: Springer, 2013: 478-483. DOI: 10.1007/978-3-642-45111-9_41.
[14] RILOFF E, SHEPHERD J. A corpus-based approach for building semantic lexicons[EB/OL]. (1997-06-10) [2018-10-14]. https://arXiv.org/abs/cmp-lg/9706013.
[15] SUN R, ZHANG Y, ZHANG M, et al. Event-driven headline generation[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2015: 462-472.
[16] DING X, ZHANG Y, LIU T, et al. Deep learning for event-driven stock prediction[C]//International Conference on Artificial Intelligence. Argentina: AAAI, 2015: 2327-2333.
[17] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[J]. Advances in Neural Information Processing Systems, 2013:3111-3119.
[18] PENNINGTON J, SOCHER R, MANNING C D. Glove: Global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg: ACL, 2014: 1532-1543.
[19] JOULIN A, GRAVE E, BOJANOWSKI P, et al. Bag of tricks for efficient text classification[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers. Stroudsburg: ACL, 2017: 427-431.
[20] SCHUSTER M, PALIWAL K P. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11):2673-2681. DOI: 10.1109/78.650093.
[21] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
[22] ZHANG L, AGGARWAL C, QI G. Stock price prediction via discovering multi-frequency trading patterns[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2017: 2141-2149.
[23] GAO Q. Stock market forecasting using recurrent neural network[D]. Columbia: University of Missouri-Columbia, 2016.
[24] RATHER A M, AGARWAL A, SASTRY V N. Recurrent neural network and a hybrid model for prediction of stock returns[J]. Expert Systems with Applications, 2015, 42(6): 3234-3241.
[25] ALTHELAYA K A, El-ALFY E M, MOHAMMED S. Evaluation of bidirectional LSTM for short-and long-term stock market prediction[C]//2018 9th International Conference on Information and Communication Systems (ICICS), [S. l.:s. n.], 2018: 151-156.
[26] ZHANG Z, CHEN W, YAN H. Stock prediction: a method based on extraction of news features and recurrent neural networks[EB/OL].(2017-07-19) [2018-10-14]. https://arXiv.org/abs/1707.07585v1.
[27] OLAH C. Understanding LSTM networks[EB/OL]. (2015-08-27)[2018-10-14]. http://colah.github.io/posts/2015-08-Understanding-LSTMs/.
[28] KINGMA D P, BA L J. Adam: A method for stochastic optimization[EB/OL].(2014-12-22) [2018-10-14]. https://arXiv.org/abs/1412.6980v1.
[29] ABADI M, AGARWAL A, BARHAM P, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems[EB/OL]. (2016-03-14) [2018-10-14]. https://arXiv.org/abs/1603.04467v1.
[30] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg: ACL, 2014: 1746-1751.
[1] ZHANG Mingyu,ZHAO Meng,CAI Fuhong,LIANG Yu,WANG Xinhong. Wave Power Prediction Based on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 25-32.
[2] LI Weiyong, LIU Bin, ZHANG Wei, CHEN Yunfang. An Automatic Summarization Model Based on Deep Learning for Chinese [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 51-63.
[3] LIU Yingxuan, WU Xiru, XUE Ganggang. Multi-target Real-time Detection for Road Traffic SignsBased on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 96-106.
[4] ZHANG Jinlei, LUO Yuling, FU Qiang. Predicting Financial Time Series Based on Gated Recurrent Unit Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 82-89.
[5] YUE Tianchi, ZHANG Shaowu, YANG Liang, LIN Hongfei, YU Kai. Stance Detection Method Based on Two-Stage Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 42-49.
[6] YU Chuanming,LI Haonan,AN Lu. Analysis of Text Emotion Cause Based on Multi-task Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 50-61.
[7] WANG Qi,QIU Jiahui,RUAN Tong,GAO Daqi,GAO Ju. Recurrent Capsule Network for Clinical Relation Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 80-88.
[8] ZHAO Hui-wei, LI Wen-hua, FENG Chun-hua, LUO Xiao-shu. Periodic Oscillation Analysis for a Recurrent Neural NetworksModel with Time Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 29-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!