Journal of Guangxi Normal University(Natural Science Edition) ›› 2017, Vol. 35 ›› Issue (2): 50-57.doi: 10.16088/j.issn.1001-6600.2017.02.008
Previous Articles Next Articles
LUO Yantao, ZHANG Long*, TENG Zhidong
CLC Number:
[1] 唐三一,肖燕妮.单种群生物动力系统[M].北京:科学出版社,2008:2-10. [2] JANKOVIC M, PETROVSKII S, BANERJEE M. Delay driven spatiotemporal chaos in single species population dynamics models[J].Theor Popul Biol,2016,110:51-62.DOI:10.1016/j.tpb.2016.04.004. [3] AIELLO W G,FREEDMAN H I. A time-delay model of single-species growth with stage structure[J]. Mathematical Bioscieces,1990,101(2):139-153.DOI:10.1016/0025-5564(90)90019-U. [4] ALLEN L J S. Persistence and extinction in single-species reaction-diffusion models[J]. Bulletin of Mathematical Biology,1983,45(2):209-227.DOI:10.1007/BF02462357. [5] LIU Zhijun,GUO Shengliang,TAN Ronghua,et al.Modeling and analysis of a non-autonomous single-species model with impulsive and random perturbations[J].Applied Mathematical Modeling,2016,40(9/10):5510-5531.DOI:10.1016/j.apm.2016.01.008. [6] ZHANG Long, XU Gao, TENG Zhidong,et al.Intermittent dispersal population model with almost period parameters and dispersal delays[J].Discrete and Continuous Dynamical System (Series B),2016,21(6):2011-2037.DOI:10.3934/dcdsb.2016034. [7] LAKSHMIKANTHAM V, BAINOV D D,SIMEONOV P S. Theory of impulsive differential equations[M].Singapore:World Scientific Press,1989:20-28. [8] 薛晋栋,冯春华.一类时滞脉冲Lotka-Volterra 系统的概周期解[J].广西师范大学学报(自然科学版),2014,32(1):69-73.DOI:10.16088/j.issn.1001-6600.2014.01.006. [9] 薛晋栋,冯春华.一类时滞脉冲微积分方程的正概周期解[J].广西师范大学学报(自然科学版),2012,30(4):48-53.DOI:10.16088/j.issn.1001-6600.2012.04.020. [10] 何崇佑.概周期微分方程[M].北京:高等教育出版社,1992:19-24. [11] 廖晓昕.稳定性的理论、方法和应用[M].武汉:华中科技大学出版社,1999:20-26. |
[1] | LUO Lan, ZHOU Nan, SI Jie. New Delay Partition Method for Robust Stability of Uncertain Cellular Neural Networks with Time-Varying Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 45-52. |
[2] | ZHANG Yijin. Random Dynamics for Stochastic Delay Lattice Systems in Xρ Space [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 106-110. |
[3] | HU Wenjun. Delay Consensus of Leader-following Multi-agent Systems via the Adaptive Distributed Control [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 70-75. |
[4] | YAN Rongjun, WEI Yuming, FENG Chunhua. Existence of Three Positive Solutions for Fractional Differential Equation ofBoundary Value Problem with p-Laplacian Operator and Delay [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 75-82. |
[5] | HUANG Kaijiao, XIAO Feiyan. A Stochastic Predator-prey System with Lévy Jumps [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 66-72. |
[6] | SONG Juan. Design of H∞ Guaranteed Cost Controller for Networked Control Systems with Time Delay [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 78-84. |
[7] | XUE Jin-dong, FENG Chun-hua. Positive Almost Periodic Solutions for a Class of Integro-differential Equation with Impulses and Infinite Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 48-53. |
[8] | FENG Chun-hua. Periodic Oscillation for a Class of Neural Network Models with n Discrete Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 48-53. |
[9] | HAO Ping-ping, FENG Chun-hua. Dynamics of a Nicholson's Model with a Nonlinear Density-dependent Mortality Term [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 42-47. |
[10] | WEI Yu-ming, WANG Yong, TANG Yan-qiu, FAN Jiang-hua. Existence and Uniqueness of Solutions for Delay Boundary Value Problems with p-Laplacian on Infinite Intervals [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 48-53. |
|