Journal of Guangxi Normal University(Natural Science Edition) ›› 2017, Vol. 35 ›› Issue (2): 50-57.doi: 10.16088/j.issn.1001-6600.2017.02.008

Previous Articles     Next Articles

Permanence of an Almost Periodic Predator-prey System withIntermit-tent Dispersal and Dispersal Delays between Patches

LUO Yantao, ZHANG Long*, TENG Zhidong   

  1. College of Mathematics and System Science,Xinjiang University,Urumqi Xinjiang 830046,China
  • Online:2017-07-25 Published:2018-07-25

Abstract: As the diffusion of migratory species between paches is neither purely continuous nor purely inpulsive in time at the base of common periodic predator-prey model with prey inpulsively unilateral diffusion and diverse perturbations exist, almost periodic parameters are more realistic than periodic parameters. In order to study the phenomena of diffusion and predation between species relevantly, an almost periodic predator-prey system with intermittent dispersal and dispersal delays between patches is studied in this paper. By applying the comparison theorem of impulsive differential equation and the method of classified discussion, some dufficient and necessary conditions on the permanence of the system are presented. Finally, numerical simulations are conduted with Matlab.

Key words: intermittent dispersal, almost periodic, delay, permanence, predator-prey

CLC Number: 

  • O175
[1] 唐三一,肖燕妮.单种群生物动力系统[M].北京:科学出版社,2008:2-10.
[2] JANKOVIC M, PETROVSKII S, BANERJEE M. Delay driven spatiotemporal chaos in single species population dynamics models[J].Theor Popul Biol,2016,110:51-62.DOI:10.1016/j.tpb.2016.04.004.
[3] AIELLO W G,FREEDMAN H I. A time-delay model of single-species growth with stage structure[J]. Mathematical Bioscieces,1990,101(2):139-153.DOI:10.1016/0025-5564(90)90019-U.
[4] ALLEN L J S. Persistence and extinction in single-species reaction-diffusion models[J]. Bulletin of Mathematical Biology,1983,45(2):209-227.DOI:10.1007/BF02462357.
[5] LIU Zhijun,GUO Shengliang,TAN Ronghua,et al.Modeling and analysis of a non-autonomous single-species model with impulsive and random perturbations[J].Applied Mathematical Modeling,2016,40(9/10):5510-5531.DOI:10.1016/j.apm.2016.01.008.
[6] ZHANG Long, XU Gao, TENG Zhidong,et al.Intermittent dispersal population model with almost period parameters and dispersal delays[J].Discrete and Continuous Dynamical System (Series B),2016,21(6):2011-2037.DOI:10.3934/dcdsb.2016034.
[7] LAKSHMIKANTHAM V, BAINOV D D,SIMEONOV P S. Theory of impulsive differential equations[M].Singapore:World Scientific Press,1989:20-28.
[8] 薛晋栋,冯春华.一类时滞脉冲Lotka-Volterra 系统的概周期解[J].广西师范大学学报(自然科学版),2014,32(1):69-73.DOI:10.16088/j.issn.1001-6600.2014.01.006.
[9] 薛晋栋,冯春华.一类时滞脉冲微积分方程的正概周期解[J].广西师范大学学报(自然科学版),2012,30(4):48-53.DOI:10.16088/j.issn.1001-6600.2012.04.020.
[10] 何崇佑.概周期微分方程[M].北京:高等教育出版社,1992:19-24.
[11] 廖晓昕.稳定性的理论、方法和应用[M].武汉:华中科技大学出版社,1999:20-26.
[1] LUO Lan, ZHOU Nan, SI Jie. New Delay Partition Method for Robust Stability of Uncertain Cellular Neural Networks with Time-Varying Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 45-52.
[2] ZHANG Yijin. Random Dynamics for Stochastic Delay Lattice Systems in Xρ Space [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 106-110.
[3] HU Wenjun. Delay Consensus of Leader-following Multi-agent Systems via the Adaptive Distributed Control [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 70-75.
[4] YAN Rongjun, WEI Yuming, FENG Chunhua. Existence of Three Positive Solutions for Fractional Differential Equation ofBoundary Value Problem with p-Laplacian Operator and Delay [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 75-82.
[5] HUANG Kaijiao, XIAO Feiyan. A Stochastic Predator-prey System with Lévy Jumps [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 66-72.
[6] SONG Juan. Design of H Guaranteed Cost Controller for Networked Control Systems with Time Delay [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 78-84.
[7] XUE Jin-dong, FENG Chun-hua. Positive Almost Periodic Solutions for a Class of Integro-differential Equation with Impulses and Infinite Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 48-53.
[8] FENG Chun-hua. Periodic Oscillation for a Class of Neural Network Models with n Discrete Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 48-53.
[9] HAO Ping-ping, FENG Chun-hua. Dynamics of a Nicholson's Model with a Nonlinear Density-dependent Mortality Term [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 42-47.
[10] WEI Yu-ming, WANG Yong, TANG Yan-qiu, FAN Jiang-hua. Existence and Uniqueness of Solutions for Delay Boundary Value Problems with p-Laplacian on Infinite Intervals [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 48-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!