Journal of Guangxi Normal University(Natural Science Edition) ›› 2016, Vol. 34 ›› Issue (2): 90-97.doi: 10.16088/j.issn.1001-6600.2016.02.013

Previous Articles     Next Articles

Monte Carlo Simulations with Dual Variables Pricing of Barrier Optionsin a Stochastic Volatility Model

WEN Xian1, DENG Guohe2   

  1. 1. Lushan College, Guangxi University of Science and Technology, Liuzhou Guangxi, 545616, China;
    2.College of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi, 541004, China
  • Received:2015-09-09 Online:2016-06-25 Published:2018-09-14

Abstract: In order to overcome the "smile" effect of the implied volatility of the stock market price and to make it fit with the market price, the pricing problem of an European barrier option is considered in stochastic volatility model. The pricing algorithm of European barrier option, the path of the volatility process and the path of the stock price are given by using the dual variable method. Then, the estimator of this option is provided. Finally, numerical examples using the finite difference method are provided to verify the accuracy of using Monte Carlo simulation with dual variable techniques.

Key words: stochastic volatility, dual variable technique, barrier option

CLC Number: 

  • O211.6
[1] HULL J C, WHITE A.The pricing of options on assets with stochastic volatilities[J].Journal of Finance,1987,42(2):281-300. DOI:10.1111/j.1540-6261.1987.tb02568.x.
[2] HESTON S L. A closed-form solution for options with stochastic volatility with applications to bond and currency options[J]. Review of Financial Studies,1993,6(2):327-343. DOI:10.1093/rfs/6.2.327.
[3] 邓国和.随机波动率跳跃扩散模型下复合期权定价[J]. 数理统计与管理,2015,34(5):910-922. DOI:10.13860/j.cnki.sltj.20140311-001.
[4] 姜迪,王玉文.随机波动率模型下的欧式期权定价[J]. 哈尔滨师范大学自然科学学报,2015,31(3):38-41.
[5] 温鲜,邓国和,霍海峰.Hull-White随机波动率模型的欧式障碍期权[J].广西师范大学学报(自然科学版),2009,27(4):49-52. DOI:10.16088/j.issn.1001-6600.2009.04.004.
[6] 徐蕾,邓国和.随机波动率模型下欧式回望期权定价[J].广西师范大学学报(自然科学版),2015,33(3):79-90. DOI:10.16088/j.issn.1001-6600.2015.03.013.
[7] 陈俊霞,蹇明.随机波动率情形下期权定价的解析解[J].统计与决策(理论版),2007(8):21-22. DOI:10.13546/j.cnki.tjyjc.2007.08.008.
[8] 曹小龙,胡云姣. 美式期权定价的拟蒙特卡罗模拟及其方差减小技术[J].北京化工大学学报(自然科学版),2014,41(3):119-124. DOI:10.13543/j.cnki.bhxbzr.2014.03.022.
[9] BLACK F, SCHOLES M. The pricing of options and corporate liability[J].Journal of Political Economy,1973,81(3):637-654.
[10] SCHOBEL R, ZHU Jianwei. Stochastic volatility with an Ornstein-Uhlenbeck process:An extension[J].European Finance Review,1999,3(1):23-46. DOI:10.1023/A:1009803506170.
[11] RUBINSTEIN M. Implied binomial trees[J]. Journal of Finance, 1994,49(3):771-818. DOI:10.1111/j.1540-6261.1994.tb00079.x.
[12] 姜礼尚.期权定价的数学模型和方法[M].北京:高等教育出版社,2003.
[1] XIONG Chenxu, WEI Miaoyun, TANG Shengda. Optimal Event-driven Transmission Power Rate for Communication Satellite [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 94-102.
[2] ZHANG Hao-qi, ZHANG Hao-min. Exponential Stability of 1.5 Order Stochastic Taylor Method for Stochastic Differential Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 35-41.
[3] HU Hua. A Convergence Result of a Rescale Process Within Locally Ergodic Random Environment [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 66-70.
[4] LI Haiyan, WEI Yuming, PENG Huaqin. Persistence and Extinction of a Stochastic SIRS EpidemicModel with Double Epidemic Hypothesis [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 144-155.
[5] LI Shuyi, WEI Yuming, PENG Huaqin. A Stochastic SIS Epidemic Model with Ornstein-Uhlenbeck Process [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 74-81.
[6] HU Hua. Generalized Ornstein-Uhlenbeck Processes Associatedwith Martingale and Its Application in Finance [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 84-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!