Journal of Guangxi Normal University(Natural Science Edition) ›› 2016, Vol. 34 ›› Issue (2): 90-97.doi: 10.16088/j.issn.1001-6600.2016.02.013
Previous Articles Next Articles
WEN Xian1, DENG Guohe2
CLC Number:
[1] HULL J C, WHITE A.The pricing of options on assets with stochastic volatilities[J].Journal of Finance,1987,42(2):281-300. DOI:10.1111/j.1540-6261.1987.tb02568.x. [2] HESTON S L. A closed-form solution for options with stochastic volatility with applications to bond and currency options[J]. Review of Financial Studies,1993,6(2):327-343. DOI:10.1093/rfs/6.2.327. [3] 邓国和.随机波动率跳跃扩散模型下复合期权定价[J]. 数理统计与管理,2015,34(5):910-922. DOI:10.13860/j.cnki.sltj.20140311-001. [4] 姜迪,王玉文.随机波动率模型下的欧式期权定价[J]. 哈尔滨师范大学自然科学学报,2015,31(3):38-41. [5] 温鲜,邓国和,霍海峰.Hull-White随机波动率模型的欧式障碍期权[J].广西师范大学学报(自然科学版),2009,27(4):49-52. DOI:10.16088/j.issn.1001-6600.2009.04.004. [6] 徐蕾,邓国和.随机波动率模型下欧式回望期权定价[J].广西师范大学学报(自然科学版),2015,33(3):79-90. DOI:10.16088/j.issn.1001-6600.2015.03.013. [7] 陈俊霞,蹇明.随机波动率情形下期权定价的解析解[J].统计与决策(理论版),2007(8):21-22. DOI:10.13546/j.cnki.tjyjc.2007.08.008. [8] 曹小龙,胡云姣. 美式期权定价的拟蒙特卡罗模拟及其方差减小技术[J].北京化工大学学报(自然科学版),2014,41(3):119-124. DOI:10.13543/j.cnki.bhxbzr.2014.03.022. [9] BLACK F, SCHOLES M. The pricing of options and corporate liability[J].Journal of Political Economy,1973,81(3):637-654. [10] SCHOBEL R, ZHU Jianwei. Stochastic volatility with an Ornstein-Uhlenbeck process:An extension[J].European Finance Review,1999,3(1):23-46. DOI:10.1023/A:1009803506170. [11] RUBINSTEIN M. Implied binomial trees[J]. Journal of Finance, 1994,49(3):771-818. DOI:10.1111/j.1540-6261.1994.tb00079.x. [12] 姜礼尚.期权定价的数学模型和方法[M].北京:高等教育出版社,2003. |
[1] | XIONG Chenxu, WEI Miaoyun, TANG Shengda. Optimal Event-driven Transmission Power Rate for Communication Satellite [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 94-102. |
[2] | ZHANG Hao-qi, ZHANG Hao-min. Exponential Stability of 1.5 Order Stochastic Taylor Method for Stochastic Differential Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 35-41. |
[3] | HU Hua. A Convergence Result of a Rescale Process Within Locally Ergodic Random Environment [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 66-70. |
[4] | LI Haiyan, WEI Yuming, PENG Huaqin. Persistence and Extinction of a Stochastic SIRS EpidemicModel with Double Epidemic Hypothesis [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 144-155. |
[5] | LI Shuyi, WEI Yuming, PENG Huaqin. A Stochastic SIS Epidemic Model with Ornstein-Uhlenbeck Process [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 74-81. |
[6] | HU Hua. Generalized Ornstein-Uhlenbeck Processes Associatedwith Martingale and Its Application in Finance [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 84-92. |
|