Journal of Guangxi Normal University(Natural Science Edition) ›› 2016, Vol. 34 ›› Issue (1): 102-105.doi: 10.16088/j.issn.1001-6600.2016.01.015
Previous Articles Next Articles
HUANG Rongli, LI Changyou
CLC Number:
[1] JOYCE D,LEE Y I,TSUI M P.Self-similar solutions and translating solitons for Lagrangian mean curvature flow[J]. J Diff Geom,2010,84(1):127-161. [2] ANCIAUX H.Construction of Lagrangian self-similar solutions to the mean curvature flow in Cn[J].Geom Dedicata,2006,120(1):37-48. DOI:10.1007/s10711-006-9082-z. [3] CHAU A,CHEN Jingyi,YUAN Yu. Rigidity of entire self-shrinking solutions to curvature flows[J].J Reine Angew Math,2012,2012(664):229-239. DOI:10.1515/CRELLE.2011.102 [4] SMOCZYK K.Self-shrinkers of the mean curvature flow in arbitrary codimension[J].Int Math Res Not,2005,2005(48):2983-3004. DOI:10.1155/IMRN.2005.2983. [5] DING Qi,XIN Yuanlong.The rigidity theorems for Lagrangian self-shrinkers[J].J Reine Angew Math,2014,2014(692):109-123. DOI:10.1515/crelle-2012-0081. [6] XU Ruiwei,CAO Linfen. Complete self-shrink solutions for lagrangian mean curvature flow in pseudo-euclidean space[J]. Abstract and Applied Analysis,2014,2014:196751.DOI:10.1155/2014/196751. [7] HUANG Rongli,WANG Zhizhang.On the entire self-shrinking solutions to Lagrangian mean curvature flow[J].Calc Var Partial Differential Equations,2011,41(3/4):321-339. DOI:10.1007/s00526-010-0364-9. [8] 陈恕行.现代偏微分方程导论[M].北京:科学出版社,2005. |
[1] | HUANG Rongli, LI Changyou, WANG Minqing. Bernstein's Theorem for a Class of Ordinary Differential Equations Ⅱ [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 50-55. |
|