Journal of Guangxi Normal University(Natural Science Edition) ›› 2016, Vol. 34 ›› Issue (1): 102-105.doi: 10.16088/j.issn.1001-6600.2016.01.015

Previous Articles     Next Articles

On Bernstein’ Theorem to a Class of Ordinary Differential Equations

HUANG Rongli, LI Changyou   

  1. College of Mathematics and Statistics,Guangxi Normal University,Guilin Guangxi 541004,China
  • Received:2015-06-02 Published:2018-09-14

Abstract: For a class of second order ordinary differential equations u″=exp-u+12tu′,u=u(t), under some condition, the expressions of solutions of these equations are investigated. If u′(0)=0,it is shown that the solution of the equation has the form of a quadratic multinomial. This result may have a positive effect in finding out the rigidity theorem related to the self-similar expansion solution of the mean curvature flows.

Key words: mean curvature flow, self-similar solution, analytic solution

CLC Number: 

  • O175.7
[1] JOYCE D,LEE Y I,TSUI M P.Self-similar solutions and translating solitons for Lagrangian mean curvature flow[J]. J Diff Geom,2010,84(1):127-161.
[2] ANCIAUX H.Construction of Lagrangian self-similar solutions to the mean curvature flow in Cn[J].Geom Dedicata,2006,120(1):37-48. DOI:10.1007/s10711-006-9082-z.
[3] CHAU A,CHEN Jingyi,YUAN Yu. Rigidity of entire self-shrinking solutions to curvature flows[J].J Reine Angew Math,2012,2012(664):229-239. DOI:10.1515/CRELLE.2011.102
[4] SMOCZYK K.Self-shrinkers of the mean curvature flow in arbitrary codimension[J].Int Math Res Not,2005,2005(48):2983-3004. DOI:10.1155/IMRN.2005.2983.
[5] DING Qi,XIN Yuanlong.The rigidity theorems for Lagrangian self-shrinkers[J].J Reine Angew Math,2014,2014(692):109-123. DOI:10.1515/crelle-2012-0081.
[6] XU Ruiwei,CAO Linfen. Complete self-shrink solutions for lagrangian mean curvature flow in pseudo-euclidean space[J]. Abstract and Applied Analysis,2014,2014:196751.DOI:10.1155/2014/196751.
[7] HUANG Rongli,WANG Zhizhang.On the entire self-shrinking solutions to Lagrangian mean curvature flow[J].Calc Var Partial Differential Equations,2011,41(3/4):321-339. DOI:10.1007/s00526-010-0364-9.
[8] 陈恕行.现代偏微分方程导论[M].北京:科学出版社,2005.
[1] HUANG Rongli, LI Changyou, WANG Minqing. Bernstein's Theorem for a Class of Ordinary Differential Equations Ⅱ [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 50-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MENG Chunmei, LU Shiyin, LIANG Yonghong, MO Xiaomin, LI Weidong, HUANG Yuanjie, CHENG Xiaojing, SU Zhiheng, ZHENG Hua. Electron Microscopy Study on the Apoptosis and Autophagy of the Hepatic Stellate Cells Induced by Total Alkaloids[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 76 -79 .
[2] LI Yuhui, CHEN Zening, HUANG Zhonghao, ZHOU Qihai. Activity Time Budget of Assamese macaque (Macaca assamensis) during Rainy Season in Nonggang Nature Reserve, Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 80 -86 .
[3] QIN Yingying, QI Guangchao, LIANG Shichu. Effects of Eichhornia crassipes Aqueous Extracts on Seed Germination of Ottelia acuminata var. jingxiensis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 87 -92 .
[4] ZHUANG Fenghong, MA Jiangming, ZHANG Yajun, SU Jing, YU Fangming. Eco-Physiological Responses of Leaves of Isoetes sinensis to Light Intensity[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 93 -100 .
[5] WEI Hongjin, ZHOU Xile, JIN Dongmei, YAN Yuehong. Additions to the Pteridophyte Flora of Hunan, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 101 -106 .
[6] BAO Jinping, ZHENG Lianbin, YU Keli, SONG Xue, TIAN Jinyuan, DONG Wenjing. Skinfold Thickness Characteristics of Yi Adults in Daliangshan,China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 107 -112 .