Journal of Guangxi Normal University(Natural Science Edition) ›› 2015, Vol. 33 ›› Issue (1): 59-66.doi: 10.16088/j.issn.1001-6600.2015.01.010
Previous Articles Next Articles
XU Shang-Jin1,2, LI Ping-shan1,2, HUANG Hai-hua1,2, LI Jing-jian1,2
CLC Number:
[1] BIGGS N. Algebraic graph theory[M]. 2nd ed. Cambridge: Cambridge University Press, 1993. [2] XU Ming-yao. Automorphism groups and isomorphisms of Cayley digraphs[J]. Discrete Math, 1998, 182(1/3): 309-319. [3] CONDER M D E, PRAEGER C E. Remarks on path-transitivity in finite graphs[J]. European Journal of Combinatorics, 1996, 17(4):371-378. [4] FRUCHT R. A one-regular graph of degree three[J]. Can J Math, 1952, 4(3):240-247. [5] LI Jing-jian, LU Zai-ping. Cubic s-arc transitive Cayley graphs[J]. Discrete Math, 2009, 309(20): 6014-6025. [6] XU Shang-jin, FANG Xing-gui, WANG Jie, et al. 5-arc transitive cubic Cayley graphs on finite simple groups[J]. European J Combin, 2007, 28(3): 1023-1036. [7] DIXON J D, MORTIMER B. Permutation groups[M]. Berlin: Springer-Verlag, 1996. |
[1] | LI Jingjian, ZHU Wenying, XIE Yating. One-Regular Cayley Graphs of Valency Odd Prime [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 121-125. |
[2] | HUA Xiao-hui, CHEN Li. Isomorphisms and Automorphisms of Coset Graphs [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 68-72. |
[3] | XU Shang-Jin, QIN Yan-li, ZHANG Yue-feng, LI Jing-jian. 1-Regular Cayley Graphs of Valency 9 with Elementary Abelian Vertex Stabilizer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(4): 66-71. |
[4] | LI Jing-jian, XU Shang-jin, WANG Rui. 1-Regular Hexavalent Cayley Graphs with Abelian Point Stabilizer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(2): 51-54. |
[5] | XU Shang-jin, ZHANG Xiao-jun, KANG Zhe, LI Jing-jian. Tetravalent Connected Half-transitive Graphs of Order qp2 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 54-58. |
|