Journal of Guangxi Normal University(Natural Science Edition) ›› 2015, Vol. 33 ›› Issue (1): 59-66.doi: 10.16088/j.issn.1001-6600.2015.01.010

Previous Articles     Next Articles

8-Valent 1-Regular Cayley Graphs WhoseVertex Stabilizer is Z4×Z2

XU Shang-Jin1,2, LI Ping-shan1,2, HUANG Hai-hua1,2, LI Jing-jian1,2   

  1. 1.College of Mathematices and Information Sciences, Guangxi University, Nanning Guangxi 530004, China;
    2. Guangxi Colleges and Universities Key Laboratory of Mathematics and Its Applications, Nanning Guangxi 530004, China
  • Received:2014-07-16 Online:2015-03-15 Published:2018-09-17

Abstract: A graph Γ is called 1-regular if its full automorphism group Aut(Γ) acts regularly on its arcs. In this paper, a complete characterization for 8-valent 1-regular Cayley Graphs with point stabilizer is presented. It is proved that there exists only 2 core-free 8-valent 1-regular Cayley graphs whose point stabilizer is Z4×Z2.

Key words: 1-regular, Cayley graph, core-free

CLC Number: 

  • O157
[1] BIGGS N. Algebraic graph theory[M]. 2nd ed. Cambridge: Cambridge University Press, 1993.
[2] XU Ming-yao. Automorphism groups and isomorphisms of Cayley digraphs[J]. Discrete Math, 1998, 182(1/3): 309-319.
[3] CONDER M D E, PRAEGER C E. Remarks on path-transitivity in finite graphs[J]. European Journal of Combinatorics, 1996, 17(4):371-378.
[4] FRUCHT R. A one-regular graph of degree three[J]. Can J Math, 1952, 4(3):240-247.
[5] LI Jing-jian, LU Zai-ping. Cubic s-arc transitive Cayley graphs[J]. Discrete Math, 2009, 309(20): 6014-6025.
[6] XU Shang-jin, FANG Xing-gui, WANG Jie, et al. 5-arc transitive cubic Cayley graphs on finite simple groups[J]. European J Combin, 2007, 28(3): 1023-1036.
[7] DIXON J D, MORTIMER B. Permutation groups[M]. Berlin: Springer-Verlag, 1996.
[1] LI Jingjian, ZHU Wenying, XIE Yating. One-Regular Cayley Graphs of Valency Odd Prime [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 121-125.
[2] HUA Xiao-hui, CHEN Li. Isomorphisms and Automorphisms of Coset Graphs [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 68-72.
[3] XU Shang-Jin, QIN Yan-li, ZHANG Yue-feng, LI Jing-jian. 1-Regular Cayley Graphs of Valency 9 with Elementary Abelian Vertex Stabilizer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(4): 66-71.
[4] LI Jing-jian, XU Shang-jin, WANG Rui. 1-Regular Hexavalent Cayley Graphs with Abelian Point Stabilizer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(2): 51-54.
[5] XU Shang-jin, ZHANG Xiao-jun, KANG Zhe, LI Jing-jian. Tetravalent Connected Half-transitive Graphs of Order qp2 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 54-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!