Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (4): 213-223.doi: 10.16088/j.issn.1001-6600.2024110104

• Ecology and Environmental Science Research • Previous Articles     Next Articles

Cloning and Expression Pattern Analysis of ClHSP70 Gene in Chinese fir

GUO Shengzhou1,2,3, XU Zuyuan1,2,3, LIU Ronglin1,2,3, LIN Qinmin4, CAO Guangqiu1,2,3, CAO Shijiang1,2,3*   

  1. 1. College of Forestry, Fujian Agriculture and Forestry University, Fuzhou Fujian 350002, China;
    2. Chinese Fir Engineering Research Center of National Forestry and Grassland Administration (Fujian Agriculture and Forestry University), Fuzhou Fujian 350002, China;
    3. University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province (Fujian Agriculture and Forestry University), Fuzhou Fujian 350002, China;
    4. College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou Fujian 350002, China
  • Received:2024-11-01 Revised:2024-12-02 Online:2025-07-05 Published:2025-07-14

Abstract: In this study, the Heat Shock Protein 70 (HSP70) gene of cedar was investigated by cloning, bioinformatics and expression analysis methods to provide a scientific basis for the in-depth understanding of the function of the HSP70 gene of cedar, as well as the genetic improvement and sustainable cultivation of cedar. The annual seedlings of the excellent Chinese fir asexual line “Yang 061” were selected as test materials, and the ClHSP70 gene was cloned by reverse transcription polymerase chain reaction (RT-PCR). The physicochemical properties, transmembrane helical domain, signal peptide, secondary structure and tertiary structure of ClHSP70 protein were predicted and analysed using Expasy software and other online software; the subcellular localization of the protein was predicted using Cell-PLoc 2.0 online software; Mega 11 software was used to construct a phylogenetic tree; the ClHSP70 gene was cloned and constructed into pCAMBIA35s-EGFP vector for analysis of ClHSP70 gene. EGFP vector to analyse the subcellular localisation of the ClHSP70 protein; and its expression level was analysed using Quantitative Real-time PCR (QRP). The cloned ClHSP70 gene encoded 670 amino acids, and the molecular formula of ClHSP70 protein was C3297H5306N904O1008S26, which was unstable, did not contain signal peptide and transmembrane region, and was predicted to be localised in the cytoplasm. Phylogenetic analysis showed that Chinese fir ClHSP70 was more closely related to hazelnut (Corylus avellana). The results of subcellular localisation experiments showed that ClHSP70 protein was localised in the nucleus. qRT-PCR expression analysis showed that the relative expression of ClHSP70 gene was the highest in the leaves, and the relative expression of ClHSP70 gene reached the peak after 6 h of high temperature, and the expression of ClHSP70 gene reached the maximum after 12 h of drought treatment, and the expression of ClHSP70 gene was up-regulated by the high temperature and drought stress induced. The ClHSP70 gene was up-regulated by high temperature and drought stress. The successful cloning and sequence analysis of the ClHSP70 gene in cedar revealed its expression in different tissues of cedar and its response to high temperature and drought, and provided an important theoretical basis for the breeding of cedar resistance.

Key words: Chinese fir, ClHSP70 gene, gene cloning, subcellular localization, high temperature and drought stress

CLC Number:  S722.8
[1] 江宇, 孙麟钧, 朱嘉宁,等. 中龄林修枝对杉木林林下植被和土壤肥力的影响[J]. 福建农林大学学报(自然科学版), 2024, 53(5): 641-648. DOI: 10.13323/j.cnki.j.fafu(nat.sci.).202310012.
[2] 林芳馨, 胥清利, 曲晓宇,等. 光环境差异对杉木幼林林下植被多样性及根系种间竞争的影响[J]. 西南林业大学学报, 2024,44(5): 35-43. DOI: 10.11929/j.swfu.202310013.
[3] 和莉, 严雨亭, 袁程昱,等. 不同林龄杉木人工林土壤病毒群落特征[J]. 应用生态学报, 2024, 35(9): 2543-2551. DOI: 10.13287/j.1001-9332.202409.007.
[4] 孙敏, 李树斌, 唐飘,等. 干旱胁迫对杉木无性系叶绿素荧光特性的影响[J]. 森林与环境学报, 2018, 38(2): 202-208. DOI: 10.13324/j.cnki.jfcf.2018.02.012.
[5] APOSTOLOVA E L. Molecular mechanisms of plant defense against abiotic stress[J]. International Journal of Molecular Sciences, 2023, 24(12): 10339. DOI: 10.3390/ijms241210339.
[6] YURINA N P. Heat shock proteins in plant protection from oxidative stress[J]. Molecular Biology, 2023, 57(6): 949-964. DOI: 10.1134/S0026893323060201.
[7] WANG W X, VINOCUR B, SHOSEYOV O, et al. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response[J]. Trends in Plant Science, 2004, 9(5): 244-252. DOI: 10.1016/j.tplants.2004.03.006.
[8] ZINN K E, TUNC-OZDEMIR M, HARPER J F. Temperature stress and plant sexual reproduction: uncovering the weakest links[J]. Journal of Experimental Botany, 2010, 61(7): 1959-1968. DOI: 10.1093/jxb/erq053.
[9] FLAHERTY K M, WILBANKS S M, DELUCA-FLAHERTY C, et al. Structural basis of the 70-kilodalton heat shock cognate protein ATP hydrolytic activity. II. Structure of the active site with ADP or ATP bound to wild type and mutant ATPase fragment[J]. The Journal of Biological Chemistry, 1994, 269(17): 12899-12907.
[10] MAYER M P, BUKAU B. Hsp70 chaperones: cellular functions and molecular mechanism[J]. CML-Cellularand Molecular Life Sciences, 2005, 62(6): 670-684. DOI: 10.1007/s00018-004-4464-6.
[11] ROSENZWEIG R, NILLEGODA N B, MAYER M P, et al. The Hsp70 chaperone network[J]. Nature Reviews Molecular Cell Biology, 2019, 20(11): 665-680. DOI: 10.1038/s41580-019-0133-3.
[12] ZHOU S J, JING Z, SHI J L, et al. Genome-wide identification, characterization, and expression analysis of the MLO gene family in Cucumis sativus[J]. Genetics and Molecular Research, 2013, 12(4): 6565-6578. DOI: 10.4238/2013.12.11.8.
[13] JIAO Q S, ZHANG M, ZADA A, et al.DJC78 is a cochaperone that interacts with cpHsc70-1 in the chloroplasts[J]. Biochemical and Biophysical Research Communicatious, 2022, 626: 236-2342. DOI: 10.1016/j.bbrc.2022.07.081.
[14] JUNGKUNZ I, LINK K, VOGEL F, et al.AtHsp70-15-deficient Arabidopsis plants are characterized by reduced growth, a constitutive cytosolic protein response and enhanced resistance to TuMV[J]. The Plant Journal, 2011, 66(6): 983-995. DOI: 10.1111/j.1365-313X.2011.04558.x.
[15] KUMAR A, SHARMA S, CHUNDURI V, et al. Genome-wide identification and characterization of heat shock protein family reveals role in development and stress conditions in Triticum aestivum L.[J]. Scientific Reports, 2020, 10(1): 7858. DOI: 10.1038/s41598-020-64746-2.
[16] MULAUDZI-MASUKU T, MUTEPE R D, MUKHORO O C, et al.Identification and characterization of a heat-inducible Hsp70 gene from Sorghum bicolor which confers tolerance to thermal stress[J]. Cell Stress and Chaperones, 2015, 20(5): 793-804. DOI: 10.1007/s12192-015-0591-2.
[17] WAHAB M M S, AKKAREDDY S, SHANTHI P, et al. Identification of differentially expressed genes under heat stress conditions in rice (Oryza sativa L.)[J]. Molecular Biology Reports, 2020,47(3): 1935-1948. DOI: 10.1007/s11033-020-05291-z.
[18] 苏江洪. 芍药HSP70基因克隆及其功能研究[D]. 扬州:扬州大学,2018.
[19] YER E N, BALOGLU M C, ZIPLAR U T, et al.Drought-responsive Hsp70 gene analysis in populus at genome-wide level[J]. Plant Molecular Biology Reporter, 2016, 34(2): 483-500. DOI: 10.1007/s11105-015-0933-3.
[20] 曹冰. 巴西橡胶树HSP70基因的克隆与表达分析[D]. 海口:海南大学,2014.
[21] 廖文海, 戴嘉豪, 李洋洋, 等. 杉木ClLSM基因的克隆及其对不同光质与非生物胁迫的响应[J]. 江西农业大学学报, 2023,45(1): 146-155. DOI: 10.13836/j.jjau.2023016.
[22] 张颖, 陈婉婷, 陈冉红,等. 杉木实时荧光定量PCR分析中内参基因的选择[J]. 林业科学研究, 2019, 32(2): 65-72. DOI: 10.13275/j.cnki.lykxyj.2019.02.010.
[23] 杨丽, 毛梦圆, 郭嘉龙,等. 杉木不同冠层高度的水力结构和光合特性[J]. 森林与环境学报, 2024,44(5): 468-475. DOI: 10.13324/j.cnki.jfcf.2024.05.003.
[24] 吴章明, 唐思莹, 宋思宇,等. 带状采伐初期对华西雨屏区杉木人工林土壤碳组分及稳定性的影响[J]. 四川农业大学学报,2024,42(4): 847-860, 878. DOI: 10.16036/j.issn.1000-2650.202401402.
[25] 江京辉, 周凡, 周永东,等. 杉木和辐射松锯材高温干燥对甲醛释放的影响[J]. 林业科学, 2020, 56(12): 130-135. DOI: 10.11707/j.1001-7488.20201215.
[26] FEIGE U, POLLA B S. Hsp70-a multi-gene, multi-structure, multi-function family with potential clinical applications[J]. Experientia, 1994, 50(11/12): 979-986. DOI: 10.1007/bf01923452.
[27] 祁茂冬, 谢鑫, 魏凤菊. 禾本科植物HSP70研究进展[J]. 植物生理学报, 2019, 55(8): 1054-1062. DOI: 10.13592/j.cnki.ppj.2019.0058.
[28] 顾颖慧. 龙须菜热激蛋白70(HSP70)基因克隆及热激下的表达模式分析[D]. 青岛:中国海洋大学,2011.
[29] WANG Z, ZOU Q, JIANG Y, et al.Review of protein subcellular localization prediction[J]. Current Bioinformatics, 2014, 9(3): 331-342. DOI: 10.2174/1574893609666140212000304.
[30] YU C S, CHEN Y C, LU C H, et al. Prediction of protein subcellular localization[J]. Proteins-Structure, Function, and Bioinformatics, 2006, 64(3): 643-651. DOI: 10.1002/prot.21018.
[31] ALMAGRO ARMENTEROS J J, SØNDERBY C K, SØNDERBY S K, et al.DeepLoc: prediction of protein subcellular localization using deep learning[J]. Bioinformatics, 2017, 33(21): 3387-3395. DOI: 10.1093/bioinformatics/btx431.
[32] SUNG D Y, KAPLAN F, GUY C L. Plant Hsp70 molecular chaperones: protein structure, gene family, expression and function[J]. Physiologia Plantarum, 2001, 113(4): 443-451. DOI: 10.1034/j.1399-3054.2001.1130402.x.
[33] YU C C, RONG M, LIU Y, et al. Genome-wide identification and characterization of HSP70 gene family in Aquilaria sinensis (Lour.) Gilg[J]. Genes, 2021, 13(1): 8. DOI: 10.3390/genes13010008.
[34] 阮文进, 门维婷, 马婧,等. 蜡梅热激蛋白基因Cp HSP70-1的克隆、亚细胞定位与表达分析[J]. 西南大学学报(自然科学版), 2016, 38(1): 43-52. DOI: 10.13718/j.cnki.xdzk.2016.01.007.
[35] 杜巧丽, 蒋君梅, 陈美晴,等. 水稻热休克蛋白HSP70基因克隆、表达分析及原核表达[J]. 植物保护学报, 2021,48(3): 620-629. DOI: 10.13802/j.cnki.zwbhxb.2021.2020193.
[36] 袁秀云, 许申平, 王默霏,等. 蝴蝶兰热激蛋白基因PhHsp70序列分析及对冷胁迫的响应[J]. 安徽农业大学学报, 2018,45(3): 519-525. DOI: 10.13610/j.cnki.1672-352x.20180620.010.
[37] 何玉琳, 吴杨, 叶子飘,等. 油茶叶片捕光色素分子内禀特性和光能利用效率对光照强度的响应[J]. 西北植物学报, 2022,42(9): 1552-1560. DOI: 10.7606/j.issn.1000-4025.2022.09.1552.
[38] 袁艳敏, 刘福利, 梁洲瑞,等. 海带hsp70基因的克隆、分析及转录水平定量研究[J]. 渔业科学进展, 2018, 39(4): 152-158. DOI: 10.19663/j.issn2095-9869.20170407001.
[39] 安艳秋, 蔺瑞明, 冯晶,等. 小麦热激蛋白基因TaHSP70克隆及其在植物防卫和抗逆反应中的表达分析[J]. 分子植物育种, 2011, 9(4): 402-409. DOI: 10.3969/mpb.009.000402.
[40] 李慧聪, 郭秀林, 王冬梅, 等. 玉米热激蛋白70基因对温度胁迫的响应[J]. 河北农业大学学报, 2010, 33(6): 12-15, 25. DOI: 10.3969/j.issn.1000-1573.2010.06.003.
[41] 李翠, 侯蕾, 任丽,等. 花生热激蛋白AhHSP70与热激因子AhHSF基因的克隆及表达分析[J]. 山东农业科学, 2015,47(4): 1-7. DOI: 10.14083/j.issn.1001-4942.2015.04.001.
[42] 陈二龙, 张明刚, 李成刚,等. 烟草Hsp70基因家族的鉴定及叶肉内CpHsp70基因的表达分析[J]. 吉林农业大学学报, 2019,41(5): 553-562. DOI: 10.13327/j.jjlau.2019.3967.
[43] 李玉言, 张泽人, 邸泽鑫,等. 花楸树HSP70基因家族鉴定及其应答非生物胁迫表达分析[J]. 基因组学与应用生物学, 2022,41(9): 1973-1984. DOI: 10.13417/j.gab.041.001973.
[44] 王占军, 汪虹妍, 杨妍萍,等. 油桐HSP70基因家族的全基因组鉴定与表达分析[J]. 江苏农业学报, 2024,40(5): 806-816. DOI: 10.3969/i.issn.1000-4440.2024.05.005.
[45] 胡秀丽, 李艳辉, 杨海荣,等. HSP70可提高干旱高温复合胁迫诱导的玉米叶片抗氧化防护能力[J]. 作物学报, 2010, 36(4): 636-644. DOI: 10.3724/SP.J.1006.2010.00636.
[46] GUO Y P, CHEN Q, QU Y Y, et al. Development and identification of molecular markers of GhHSP70-26 related to heat tolerance in cotton[J]. Gene, 2023, 874: 147486. DOI: 10.1016/j.gene.2023.147486.
[47] 凡超, 杨杰, 陈蓉,等. 荔枝HSP70家族鉴定及其响应非生物胁迫的表达分析[J]. 生物工程学报, 2024,40(4): 1102-1119. DOI: 10.13345/j.cjb.230450.
[48] AHMAD M Z, SHAH Z, ULLAH A, et al. Genome wide and evolutionary analysis of heat shock protein 70 proteins in tomato and their role in response to heat and drought stress[J]. Molecular Biology Reports, 2022,49(12): 11229-11241. DOI: 10.1007/s11033-022-07734-1.
[1] LUO Honglin, FENG Pengfei, YU Yanling, XIAO Rui, PAN Chuanyan, SONG Manling, ZHANG Yongde. Molecular Cloning of the Myostatin Gene and Its Expression During Embryo Development of Trachinotus ovatus [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 136-147.
[2] ZHOU Jie, ZENG Zhipeng, LI Jinyue, CHEN Qiaoyuan, LIN Wanhua. Study on Subcellular Localization of SDR9C7 Protein in HepG2 Cells [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 102-106.
[3] ZHAO Zhi-chang, HU Fu-chu, HU Gui-bing, WANG Hui-cong, YANG Zhuan-ying, SU Chun-lan, LI Jia-qiang. Cloning Glucose-flavonoid 3-o-glucosyltransferase (UFGT) from Litchi and Expression in Escherichia coli [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(4): 104-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Ankang, CHEN Yanping, HU Ying, HUANG Ruizhang, QIN Yongbin. Fusing Boundary Interaction Information for Named Entity Recognition[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 1 -11 .
[2] LU Zhanyue, CHEN Yanping, YANG Weizhe, HUANG Ruizhang, QIN Yongbin. Relational Extraction Method Based on Mask Attention and Multi-feature Convolutional Networks[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 12 -22 .
[3] QI Dandan, WANG Changzheng, GUO Shaoru, YAN Zhichao, HU Zhiwei, SU Xuefeng, MA Boxiang, LI Shizhao, LI Ru. Topic-based Multi-view Entity Representation for Zero-Shot Entity Retrieval[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 23 -34 .
[4] HUANG Chuanyang, CHENG Can’er, LI Songwei, CHENG Hongdong, ZHANG Qiunan, ZHANG Zhao, SHAO Laipeng, TANG Jian, WANG Yongmei, GUO Kuikui, LU Hanglin, HU Junhui. Study on Temperature Sensing Characteristics of Long Period Fiber Grating with Coating Layer[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 35 -42 .
[5] TIAN Sheng, XIONG Chenyin, LONG Anyang. Point Cloud Classification Method of Urban Roads Based on Improved PointNet++[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 1 -14 .
[6] LI Zongxiao, ZHANG Jian, LUO Xinyue, ZHAO Yifei, LU Fei. Research on Arrival Trajectory Prediction Based on K-means and Adam-LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 15 -23 .
[7] SONG Mingkai, ZHU Chengjie. Research on Fault Location of Distribution Network Based on H-WOA-GWO and Region Correction Strategies[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 24 -37 .
[8] CHEN Yu, CHEN Lei, ZHANG Yi, ZHANG Zhirui. Wind Speed Prediction Model Based on QMD-LDBO-BiGRU[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 38 -57 .
[9] HAN Shuo, JIANG Linfeng, YANG Jianbin. Attention-based PINNs Method for Solving Saint-Venant Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 58 -68 .
[10] LI Zhixin, KUANG Wenlan. Fine-grained Image Classification Combining Adaptive Spatial Mutual Attention and Feature Pair Integration Discrimination[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 69 -82 .