Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (4): 175-187.doi: 10.16088/j.issn.1001-6600.2024091801

• Ecology and Environmental Science Research • Previous Articles     Next Articles

Regulating the Ratio of B Acid and L Acid in Zeolites for High-Value Conversion of Furfural

PENG Zirui1#, JI Weilong2#, XU Bo3, ZONG Yanlong2, QIAO Xueyi3*, LU Tianliang2, WANG Jianfeng1*   

  1. 1. School of Ecology and Environment, Zhengzhou University, Zhengzhou Henan 450001, China;
    2. School of Chemical Engineering, Zhengzhou University, Zhengzhou Henan 450001, China;
    3. Zhengzhou Tobacco Research Institute, Zhengzhou Henan 450001, China
  • Received:2024-09-18 Revised:2024-11-07 Online:2025-07-05 Published:2025-07-14

Abstract: As important biomass platform molecules, isopropyl levulinate and γ-valerolactone have promising applications in the production of chemicals, liquid fuels and polymerization. The acidity-tunable P-Zr/H-Beta bifunctional catalyst for the selective conversion of furfural to γ-valerolactone and isopropyl levulinate were prepared. The catalyst could effectively catalytic production of γ-valerolactone and isopropyl levulinate from furfural via transfer hydrogenation, ring opening and cyclization reactions with isopropanol as the hydrogen donor. The yields of γ-valerolactone and isopropyl levulinate were 41.6% and 23.7%, respectively, with a total yield of 65.3% at 150 ℃. The reaction activity of transfer hydrogenation mainly depended on the acid-base sites of catalyst, which was determined by the molar ratio of P to Zr in P-Zr/H-Beta. In addition, the effects of reaction parameters such as time and temperature on the yield of γ-valerolactone were explored; and the structure of P-Zr/H-Beta was further characterized in detail.

Key words: furfural, γ-valerolactone, isopropyl levulinate, transfer hydrogenation, Beta zeolite

CLC Number:  O621;X703;TQ426
[1] 左钧元,李欣彤,曾子涵,等.金属有机骨架基催化剂在糠醛选择性加氢反应中的应用研究进展[J].广西师范大学学报(自然科学版),2024,42(5):28-38. DOI: 10.16088/j.issn.1001-6600.2024040202.
[2] 尹理亚,丁开,杜文泽,等.金属/非金属和氮共掺杂生物炭的制备及其在有机污水处理中的应用进展[J].广西师范大学学报(自然科学版),2024,42(1):9-17. DOI: 10.16088/j.issn.1001-6600.2023032702.
[3] FELLAY C, DYSON P J, LAURENCZY G. A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst[J]. Angewandte Chemie International Edition, 2008,47(21): 3966-3968. DOI: 10.1002/anie.200800320.
[4] FÁBOS V, MIKA L T, HORVÁTH I T. Selective conversion of levulinic and formic acids to γ-valerolactone with the Shvo catalyst[J]. Organometallics, 2014, 33(1): 181-187. DOI: 10.1021/om400938h.
[5] ZHANG J, WU S B, LI B, et al. Advances in the catalytic production of valuable levulinic acid derivatives[J]. ChemCatChem, 2012,4(9): 1230-1237. DOI: 10.1002/cctc.201200113.
[6] PILEIDIS F D, TITIRICI M M. Levulinic acid biorefineries: new challenges for efficient utilization of biomass[J]. ChemSusChem, 2016, 9(6): 562-582. DOI: 10.1002/cssc.201501405.
[7] LEAL SILVA J F, GREKIN R, MARIANO A P, et al. Making levulinic acid and ethyl levulinate economically viable: a worldwide technoeconomic and environmental assessment of possible routes[J]. Energy Technology, 2018, 6(4): 613-639. DOI: 10.1002/ente.201700594.
[8] CHRISTENSEN E, WILLIAMS A, PAUL S, et al. Properties and performance of levulinate esters as diesel blend components[J]. Energy & Fuels, 2011, 25(11): 5422-5428. DOI: 10.1021/ef201229j.
[9] SHRIVASTAV G, KHAN T S, AGARWAL M, et al. Reformulation of gasoline to replace aromatics by biomass-derived alkyl levulinates[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7118-7127. DOI: 10.1021/acssuschemeng.7b01316.
[10] BUI L, LUO H, GUNTHER W R, et al. Domino reaction catalyzed by zeolites with Brønsted and Lewis acid sites for the production of γ-valerolactone from furfural[J]. Angewandte Chemie International Edition, 2013, 52(31): 8022-8025. DOI: 10.1002/anie.201302575.
[11] ZHANG T W, LU Y J, LI W Z, et al. One-pot production of γ-valerolactone from furfural using Zr-graphitic carbon nitride/H-β composite[J]. International Journal of Hydrogen Energy, 2019,44(29): 14527-14535. DOI: 10.1016/j.ijhydene.2019.04.059.
[12] WEINGARTEN R, KIM Y T, TOMPSETT G A, et al. Conversion of glucose into levulinic acid with solid metal(IV) phosphate catalysts[J]. Journal of Catalysis, 2013, 304: 123-134. DOI: 10.1016/j.jcat.2013.03.023.
[13] SONG S, DI L, WU G J, et al. Meso-Zr-Al-beta zeolite as a robust catalyst for cascade reactions in biomass valorization[J]. Applied Catalysis B: Environmental, 2017, 205: 393-403. DOI: 10.1016/j.apcatb.2016.12.056.
[14] ANTUNES M M, LIMA S, NEVES P, et al. One-pot conversion of furfural to useful bio-products in the presence of a Sn, Al-containing zeolite beta catalyst prepared via post-synthesis routes[J]. Journal of Catalysis, 2015, 329: 522-537. DOI: 10.1016/j.jcat.2015.05.022.
[15] WINOTO H P, AHN B S, JAE J. Production of γ-valerolactone from furfural by a single-step process using Sn-Al-beta zeolites: optimizing the catalyst acid properties and process conditions[J]. Journal of Industrial and Engineering Chemistry, 2016,40: 62-71. DOI: 10.1016/j.jiec.2016.06.007.
[16] SCHWARTZ T J, GOODMAN S M, OSMUNDSEN C M, et al. Integration of chemical and biological catalysis: production of furylglycolic acid from glucose via cortalcerone[J]. ACS Catalysis, 2013, 3(12): 2689-2693. DOI: 10.1021/cs400593p.
[17] LI L, DING J H, JIANG J G, et al. One-pot synthesis of 5-hydroxymethylfurfural from glucose using bifunctional[Sn, Al] -beta catalysts[J]. Chinese Journal of Catalysis, 2015, 36(6): 820-828. DOI: 10.1016/S1872-2067(14)60287-4.
[18] DIJKMANS J, DUSSELIER M, GABRIËLS D, et al. Cooperative catalysis for multistep biomass conversion with Sn/Al beta zeolite[J]. ACS Catalysis, 2015, 5(2): 928-940. DOI: 10.1021/cs501388e.
[19] 夏国鹏,李相呈,梁俊,等.Zr-SCM-1分子筛一锅法高效催化糠醛制备γ-戊内酯[J].化学反应工程与工艺,2020,36(2):155-161,169. DOI: 10.11730/j.issn.1001-7631.2020.02.0155.07.
[20] SRINIVASA RAO B, KRISHNA KUMARI P, KOLEY P, et al. One pot selective conversion of furfural to γ-valerolactone over zirconia containing heteropoly tungstate supported on β-zeolite catalyst[J]. Molecular Catalysis, 2019,466: 52-59. DOI: 10.1016/j.mcat.2018.12.024.
[21] PATEL S M, CHUDASAMA U V, GANESHPURE P A. Cyclodehydration of 1,4-butanediol catalyzed by metal(IV) phosphates[J]. Reaction Kinetics and Catalysis Letters, 2002, 76(2): 317-325. DOI: 10.1023/A:1016544213522.
[22] KAMIYA Y, SAKATA S, YOSHINAGA Y, et al. Zirconium phosphate with a high surface area as a water-tolerant solid acid[J]. Catalysis Letters, 2004, 94(1): 45-47. DOI: 10.1023/B:CATL.0000019329.82828.e4.
[23] HATTORI T, ISHIGURO A, MURAKAMI Y. Acidity of crystalline zirconium phosphate[J]. Journal of Inorganic and Nuclear Chemistry, 1978,40(6): 1107-1111. DOI: 10.1016/0022-1902(78)80519-3.
[24] WEINGARTEN R, TOMPSETT G A, CONNER W C, et al. Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates: the role of Lewis and Brønsted acid sites[J]. Journal of Catalysis, 2011, 279(1): 174-182. DOI: 10.1016/j.jcat.2011.01.013.
[25] YOU X F, XU Y M, LU T L, et al. Catalytic oppenauer oxidation of secondary alcohols over post-synthesized Sn-Beta[J]. Catalysis Science & Technology, 2023, 13(8): 2551-2558. DOI: 10.1039/D3CY00185G.
[26] YE L, HAN Y W, BAI H, et al. HZ-ZrP catalysts with adjustable ratio of Brønsted and Lewis acids for the one-pot value-added conversion of biomass-derived furfural[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(19): 7403-7413. DOI: 10.1021/acssuschemeng.0c01259.
[27] LIN X Z, REN T Z, YUAN Z Y. Mesoporous zirconium phosphonate materials as efficient water-tolerable solid acid catalysts[J]. Catalysis Science & Technology, 2015, 5(3): 1485-1494. DOI: 10.1039/C4CY01110D.
[28] FAN X J, ZHANG B Q, SU Z Y, et al. Preparation, surface acidity and catalytic performance of Beta/ZSM-5 composite molecular sieve[J]. Chemical Physics, 2022, 558: 111512. DOI: 10.1016/j.chemphys.2022.111512.
[29] JIMÉNEZ-JIMÉNEZ J, MAIRELES-TORRES P, OLIVERA-PASTOR P, et al. Surfactant-assisted synthesis of a mesoporous form of zirconium phosphate with acidic properties[J]. Advanced Materials, 1998, 10(10): 812-815. DOI: 10.1002/(SICI)1521-4095(199807)10:10<812::AID-ADMA812>3.0.CO;2-A.
[30] MIAO Z C, XU L L, SONG H L, et al. One-pot synthesis of ordered mesoporous zirconium oxophosphate with high thermostability and acidic properties[J]. Catalysis Science & Technology, 2013, 3(8): 1942-1954. DOI: 10.1039/C3CY00085K.
[31] TANG B, DAI W L, SUN X M, et al. Mesoporous Zr-Beta zeolites prepared by a post-synthetic strategy as a robust lewis acid catalyst for the ring-opening aminolysis of epoxides[J]. Green Chemistry, 2015, 17(3): 1744-1755. DOI: 10.1039/C4GC02116A.
[32] LI P, LIU G Q, WU HH, et al. Postsynthesis and selective oxidation properties of nanosized Sn-Beta zeolite[J]. Journal of Physical Chemistry C, 2011, 115(9): 3663-3670. DOI: 10.1021/jp1076966.
[33] LIN X Z, YUAN Z Y. Synthesis of mesoporous zirconium organophosphonate solid-acid catalysts[J]. European Journal of Inorganic Chemistry, 2012, 2012(16): 2661-2664. DOI: 10.1002/ejic.201101064.
[34] LU TL, YOU X F, ZONG Y L, et al. Production of γ-valerolactone from ethyl levulinate over hydrothermally synthesized Sn-Beta under mild conditions[J]. Fuel, 2023, 332(Part 2): 126262. DOI: 10.1016/j.fuel.2022.126262.
[35] HARRIS J W, CORDON M J, DI IORIO J R, et al. Titration and quantification of open and closed Lewis acid sites in Sn-Beta zeolites that catalyze glucose isomerization[J]. Journal of Catalysis, 2016, 335: 141-154. DOI: 10.1016/j.jcat.2015.12.024.
[36] LI F K, FRANCE L J, CAI Z P, et al. Catalytic transfer hydrogenation of butyl levulinate to γ-valerolactone over zirconium phosphates with adjustable Lewis and Brønsted acid sites[J]. Applied Catalysis B: Environmental, 2017, 214: 67-77. DOI: 10.1016/j.apcatb.2017.05.013.
[37] LIU X F, PAN H, ZHANG H, et al. Efficient catalytic upgradation of bio-based furfuryl alcohol to ethyl levulinate using mesoporous acidic MIL-101(Cr)[J]. ACS Omega, 2019,4(5): 8390-8399. DOI: 10.1021/acsomega.9b00480.
[38] MA M W, LIANG N, HOU P, et al.Humins with efficient electromagnetic wave absorption: a by-product of furfural conversion to isopropyl levulinate via a tandem catalytic reaction in one-pot[J]. Chemistry, 2021, 27(49): 12659-12666. DOI: 10.1002/chem.202101928.
[39] MA M W, HOU P, ZHANG P, et al. Tandem catalysis of furfural to γ-valerolactone over polyoxometalate-based metal-organic frameworks: exploring the role of confinement in the catalytic process[J]. Renewable Energy, 2024, 227: 120474. DOI: 10.1016/j.renene.2024.120474.
[40] WINOTO H P, FIKRI Z A, HA J M, et al. Heteropolyacid supported on Zr-Beta zeolite as an active catalyst for one-pot transformation of furfural to γ-valerolactone[J]. Applied Catalysis B: Environmental, 2019, 241: 588-597. DOI: 10.1016/j.apcatb.2018.09.031.
[41] MORALES G, MELERO J A, IGLESIAS J, et al. From levulinic acid biorefineries to γ-valerolactone (GVL) using a bi-functional Zr-Al-Beta catalyst[J]. Reaction Chemistry & Engineering, 2019,4(10): 1834-1843. DOI: 10.1039/C9RE00117D.
[42] ZHANG J, DONG K J, LUO W M, et al. Selective transfer hydrogenation of furfural into furfuryl alcohol on Zr-containing catalysts using lower alcohols as hydrogen donors[J]. ACS Omega, 2018, 3(6): 6206-6216. DOI: 10.1021/acsomega.8b00138.
[43] YANG G, PIDKO E A, HENSEN E J M. Mechanism of Brønsted acid-catalyzed conversion of carbohydrates[J]. Journal of Catalysis, 2012, 295: 122-132. DOI: 10.1016/j.jcat.2012.08.002.
[1] ZUO Junyuan, LI Xintong, ZENG Zihan, LIANG Chao, CAI Jinjun. Recent Advances on Metal-Organic Framework-Based Catalysts for Selective Furfural Hydrogenation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 28-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Ankang, CHEN Yanping, HU Ying, HUANG Ruizhang, QIN Yongbin. Fusing Boundary Interaction Information for Named Entity Recognition[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 1 -11 .
[2] LU Zhanyue, CHEN Yanping, YANG Weizhe, HUANG Ruizhang, QIN Yongbin. Relational Extraction Method Based on Mask Attention and Multi-feature Convolutional Networks[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 12 -22 .
[3] QI Dandan, WANG Changzheng, GUO Shaoru, YAN Zhichao, HU Zhiwei, SU Xuefeng, MA Boxiang, LI Shizhao, LI Ru. Topic-based Multi-view Entity Representation for Zero-Shot Entity Retrieval[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 23 -34 .
[4] HUANG Chuanyang, CHENG Can’er, LI Songwei, CHENG Hongdong, ZHANG Qiunan, ZHANG Zhao, SHAO Laipeng, TANG Jian, WANG Yongmei, GUO Kuikui, LU Hanglin, HU Junhui. Study on Temperature Sensing Characteristics of Long Period Fiber Grating with Coating Layer[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 35 -42 .
[5] TIAN Sheng, XIONG Chenyin, LONG Anyang. Point Cloud Classification Method of Urban Roads Based on Improved PointNet++[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 1 -14 .
[6] LI Zongxiao, ZHANG Jian, LUO Xinyue, ZHAO Yifei, LU Fei. Research on Arrival Trajectory Prediction Based on K-means and Adam-LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 15 -23 .
[7] SONG Mingkai, ZHU Chengjie. Research on Fault Location of Distribution Network Based on H-WOA-GWO and Region Correction Strategies[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 24 -37 .
[8] CHEN Yu, CHEN Lei, ZHANG Yi, ZHANG Zhirui. Wind Speed Prediction Model Based on QMD-LDBO-BiGRU[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 38 -57 .
[9] HAN Shuo, JIANG Linfeng, YANG Jianbin. Attention-based PINNs Method for Solving Saint-Venant Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 58 -68 .
[10] LI Zhixin, KUANG Wenlan. Fine-grained Image Classification Combining Adaptive Spatial Mutual Attention and Feature Pair Integration Discrimination[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 69 -82 .