Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (4): 120-128.doi: 10.16088/j.issn.1001-6600.2024062102

• Mathematics and Statistics • Previous Articles     Next Articles

Bifurcation of Traveling Wave Solutions for the Time-Space Fractional Sasa-Satsuma Equation

XU Jiansong, SUN Yuhuai*   

  1. School of Mathematical Sciences, Sichuan Normal University, Chengdu Sichuan 610066, China
  • Received:2024-06-21 Revised:2024-10-11 Online:2025-07-05 Published:2025-07-14

Abstract: In order to study the bifurcation and dynamical behavior of traveling wave solutions of the time-space fractional Sasa-Satsuma equation, the fractional-order complex transformation of the time-space fractional Sasa-Satsuma equation is performed to transform them into an equivalent ordinary differential system,the corresponding plane dynamic system is derived,and the corresponding phase diagram is obtained by discussing the different values of the parameters of the plane dynamic system. According to the bifurcation of the system, the exact expressions of various traveling wave solutions for the time-space fractional Sasa-Satsuma equations with different trajectories are obtained.

Key words: time-space fractional, Sasa-Satsuma equation, traveling wave solutions, dynamical system, bifurcation

CLC Number:  O175.29
[1] IQBAL I, REHMAN H U, ASHRAF H, et al. Soliton unveilings in optical fiber transmission: Examining soliton structures through the Sasa-Satsuma equation[J]. Results in Physics, 2024, 60: 107648. DOI: 10.1016/j.rinp.2024.107648.
[2] GHOSH P K. Conformal symmetry and the nonlinear Schrödinger equation[J]. Physical Review A, 2001, 65(1): 012103. DOI: 10.1103/PhysRevA.65.012103.
[3] CHABCHOUB A, KIBLER B, FINOT C, et al. The nonlinear Schrödinger equation and the propagation of weakly nonlinear waves in optical fibers and on the water surface[J]. Annals of Physics, 2015, 361: 490-500. DOI: 10.1016/j.aop.2015.07.003.
[4] WANG K J, ZHANG P L. Investigation of the periodic solution of the time-space fractional Sasa-Satsuma equation arising in the monomode optical fibers[J]. Europhysics Letters, 2022, 137(6): 62001. DOI: 10.1209/0295-5075/ac2a62.
[5] MIHALACHE D, TORNER L, MOLDOVEANU F, et al. Inverse-scattering approach to femtosecond solitons in monomode optical fibers[J]. Physical Review E, 1993,48(6): 4699-4709. DOI: 10.1103/physreve.48.4699.
[6] KODAMA Y. Optical solitons in a monomode fiber[J]. Journal of Statistical Physics, 1985, 39(5): 597-614. DOI: 10.1007/BF01008354.
[7] AKRAM G, SADAF M, ARSHED S, et al. Optical soliton solutions of fractional Sasa-Satsuma equation with beta and conformable derivatives[J]. Optical and Quantum Electronics, 2022, 54(11): 741. DOI: 10.1007/s11082-022-04153-1.
[8] LI C C, CHEN L W, LI G H. Optical solitons of space-time fractional Sasa-Satsuma equation by F-expansion method[J]. Optik, 2020, 224: 165527. DOI: 10.1016/j.ijleo.2020.165527.
[9] YÉPEZ-MARTÍNEZ H, REZAZADEH H, INC M, et al. Optical solitons of the fractional nonlinear Sasa-Satsuma equation with third-order dispersion and with Kerr nonlinearity law in modulation instability[J]. Optical and Quantum Electronics, 2022, 54(12): 804. DOI: 10.1007/s11082-022-04207-4.
[10] RAHEEL M, ZAFAR A, INC M, et al. Optical solitons to time-fractional Sasa-Satsuma higher-order non-linear Schrödinger equation via three analytical techniques[J]. Optical and Quantum Electronics, 2023, 55(4): 307. DOI: 10.1007/s11082-023-04565-7.
[11] WANG K J, LIU J H. Periodic solution of the time-space fractional Sasa-Satsuma equation in the monomode optical fibers by the energy balance theory[J]. Europhysics Letters, 2022, 138(2): 25002. DOI: 10.1209/0295-5075/ac5c78.
[12] MURAD M A S, ISMAEL H F, SULAIMAN T A, et al. Higher-order time-fractional Sasa-Satsuma equation: various optical soliton solutions in optical fiber[J]. Results in Physics, 2023, 55: 107162. DOI: 10.1016/j.rinp.2023.107162.
[13] 何进春,陈宗蕴,黄念宁.求解DNLS方程的反散射法的基本问题[J].物理学报,2009,58(9):6063-6067. DOI: 10.3321/j.issn:1000-3290.2009.09.028.
[14] 周建军,洪宝剑,卢殿臣.耦合Schrödinger-Boussinesq方程组的显式精确解[J].广西师范大学学报(自然科学版),2013,31(1):11-15. DOI: 10.16088/j.issn.1001-6600.2013.01.016.
[15] FAROOQ A, KHAN M I, NISAR K S, et al. A detailed analysis of the improved modified Korteweg-de Vries equation via the Jacobi elliptic function expansion method and the application of truncated M-fractional derivatives[J]. Results in Physics, 2024, 59: 107604. DOI: 10.1016/j.rinp.2024.107604.
[16] 曹娜,徐丽阳,尹晓军.变系数F展开法求解非线性Schrödinger方程的精确解[J].应用数学,2023,36(1):161-169. DOI: 10.13642/j.cnki.42-1184/o1.2023.01.009.
[17] BORG M, BADRA N M, AHMED H M, et al. Solitons behavior of Sasa-Satsuma equation in birefringent fibers with Kerr law nonlinearity using extended F-expansion method[J]. Ain Shams Engineering Journal, 2024, 15(1): 102290. DOI: 10.1016/j.asej.2023.102290.
[18] 王丽真,沈翔.利用首次积分法求解一致时空分数阶微分方程[J].西北大学学报(自然科学版),2022,52(2):279-287. DOI: 10.16152/j.cnki.xdxbzr.2022-02-014.
[19] LIU H Z. A modification to the first integral method and its applications[J]. Applied Mathematics and Computation, 2022,419: 126855. DOI: 10.1016/j.amc.2021.126855.
[20] KHATER M M A, LU D C, ATTIA R A M. Dispersive long wave of nonlinear fractional Wu-Zhang system via a modified auxiliary equation method[J]. AIP Advances, 2019, 9(2): 025003. DOI: 10.1063/1.5087647.
[21] REHMAN H U, HASSAN M U, SALEEM M S, et al. Soliton solutions of Zakhrov equation in ionized plasma using new extended direct algebraic method[J]. Results in Physics, 2023,46: 106325. DOI: 10.1016/j.rinp.2023.106325.
[22] 胡艳,孙峪怀.应用多项式完全判别系统方法求解时空分数阶复Ginzburg-Landau方程[J].应用数学和力学,2021,42(8):874-880. DOI: 10.21656/1000-0887.410392.
[23] LI Z, FAN W J, MIAO F. Chaotic pattern, phase portrait, sensitivity and optical soliton solutions of coupled conformable fractional Fokas-Lenells equation with spatio-temporal dispersion in birefringent fibers[J]. Results in Physics, 2023,47: 106386. DOI: 10.1016/j.rinp.2023.106386.
[24] TANG L. Bifurcation analysis and optical soliton solutions for the fractional complex Ginzburg-Landau equation in communication systems[J]. Optik, 2023, 276: 170639. DOI: 10.1016/j.ijleo.2023.170639.
[25] AYDIN M E. Effect of local fractional derivatives on Riemann curvature tensor[J]. Examples and Counterexamples, 2024, 5: 100134. DOI: 10.1016/j.exco.2023.100134.
[26] ZHANG Y N, PANG J. He’s homotopy perturbation method and fractional complex transform for analysis time fractional Fornberg-Whitham equation[J]. Sound and Vibration, 2021, 55(4): 295-303. DOI: 10.32604/sv.2021.014445.
[27] ABDELHAQ L, SYAM S M, SYAM M I. An efficient numerical method for two-dimensional fractional integro-differential equations with modified Atangana-Baleanu fractional derivative using operational matrix approach[J]. Partial Differential Equations in Applied Mathematics, 2024, 11: 100824. DOI: 10.1016/j.padiff.2024.100824.
[28] ORTIGUEIRA M D, RODRÍGUEZ-GERMÁ L, TRUJILLO J J. Complex Complex Grünwald-Letnikov, Liouville, Riemann-Liouville, and Caputo derivatives for analytic functions[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(11): 4174-4182. DOI: 10.1016/j.cnsns.2011.02.022.
[29] 吴强,黄建华.分数阶微积分[M].北京:清华大学出版社,2016:185.
[30] KHALIL R, AL HORANI M, YOUSEF A, et al. A new definition of fractional derivative[J]. Journal of Computational and Applied Mathematics, 2014, 264: 65-70. DOI: 10.1016/j.cam.2014.01.002.
[31] YAN F, LIU H H, LIU Z R. The bifurcation and exact travelling wave solutions for the modified Benjamin-Bona-Mahoney (mBBM) equation[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(7): 2824-2832. DOI: 10.1016/j.cnsns.2011.11.014.
[32] 张卫国,杨萌.耦合DSW方程的周期波解与孤波解[J].应用数学学报,2020,43(5):792-820.
[1] ZHANG Xiaoqian, WANG Lei. Singular Cycles Bifurcation Leading to Limit Cycles in 2-Dimensional Piecewise Affine Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 98-105.
[2] CHEN Jiarui, LING Lin, JIANG Guirong. Modeling and Dynamics Analysis of an Ascending Stairs Biped Robot Under Impulse Thrust [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 131-144.
[3] HUANG Wentao, GU Jieping, WANG Qinlong. Limit Cycles and Isochronous Centers of Three-dimensional Differential Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 104-126.
[4] SHAO Huiting, YANG Qigui. Complex Dynamics of a Six-dimensional Hyperchaotic System with Four Positive Lyapunov Exponents [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 433-444.
[5] XU Wangjun, CAO Jinde, WU Daiyong, SHEN Chuansheng. Stability of a Prey-predator Model with Migration and Allee Effects [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 103-115.
[6] RUAN Wenjing, YANG Qigui. Research on Complex Dynamics of a New Four-dimensional Hyperchaotic System with Finite and Infinite Isolated Singularities [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 173-181.
[7] LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79-92.
[8] HUANG Chunxian, ZHOU Xiaoliang. Bifurcation Analysis of an SIRS Epidemic Model with Graded Cure and Incomplete Recovery Rates [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 74-81.
[9] HE Dongping,HUANG Wentao ,WANG Qinlong. Limit Cycle Flutter and Chaostic Motion of Two-Dimensional Airfoil System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 87-95.
[10] HONG Lingling, YANG Qigui. Research on Complex Dynamics of a New 4D Hyperchaotic System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 96-105.
[11] ZHANG Yijin. Random Dynamics for Stochastic Delay Lattice Systems in Xρ Space [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 106-110.
[12] KANG Yun-lian, LIU Long-sheng, ZHAO Jun-ling. Distributional Chaotic Property of the Factor System of Symbolic Dynamical System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 66-70.
[13] LIU Jun-xian, PEI Qi-ming, QIN Zong-ding, JIANG Yu-ling. Study of the Lorenz Equations in a New Parameter Space [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 1-12.
[14] WANG Li-long, XUE Ze, ZHOU Jin-yang, TAN Hui-li, LI Hua-bing. Movement of Single Particle at the Bifurcation Pipe by Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 25-29.
[15] HAO Li-jie, JIANG Gui-rong, LU Peng. Pulse Control and Bifurcation Analysis of a SIRS Epidemic Model with Vertical Transmission [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 42-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Ankang, CHEN Yanping, HU Ying, HUANG Ruizhang, QIN Yongbin. Fusing Boundary Interaction Information for Named Entity Recognition[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 1 -11 .
[2] LU Zhanyue, CHEN Yanping, YANG Weizhe, HUANG Ruizhang, QIN Yongbin. Relational Extraction Method Based on Mask Attention and Multi-feature Convolutional Networks[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 12 -22 .
[3] QI Dandan, WANG Changzheng, GUO Shaoru, YAN Zhichao, HU Zhiwei, SU Xuefeng, MA Boxiang, LI Shizhao, LI Ru. Topic-based Multi-view Entity Representation for Zero-Shot Entity Retrieval[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 23 -34 .
[4] HUANG Chuanyang, CHENG Can’er, LI Songwei, CHENG Hongdong, ZHANG Qiunan, ZHANG Zhao, SHAO Laipeng, TANG Jian, WANG Yongmei, GUO Kuikui, LU Hanglin, HU Junhui. Study on Temperature Sensing Characteristics of Long Period Fiber Grating with Coating Layer[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 35 -42 .
[5] TIAN Sheng, XIONG Chenyin, LONG Anyang. Point Cloud Classification Method of Urban Roads Based on Improved PointNet++[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 1 -14 .
[6] LI Zongxiao, ZHANG Jian, LUO Xinyue, ZHAO Yifei, LU Fei. Research on Arrival Trajectory Prediction Based on K-means and Adam-LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 15 -23 .
[7] SONG Mingkai, ZHU Chengjie. Research on Fault Location of Distribution Network Based on H-WOA-GWO and Region Correction Strategies[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 24 -37 .
[8] CHEN Yu, CHEN Lei, ZHANG Yi, ZHANG Zhirui. Wind Speed Prediction Model Based on QMD-LDBO-BiGRU[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 38 -57 .
[9] HAN Shuo, JIANG Linfeng, YANG Jianbin. Attention-based PINNs Method for Solving Saint-Venant Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 58 -68 .
[10] LI Zhixin, KUANG Wenlan. Fine-grained Image Classification Combining Adaptive Spatial Mutual Attention and Feature Pair Integration Discrimination[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 69 -82 .