Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (3): 198-205.doi: 10.16088/j.issn.1001-6600.2023051101

Previous Articles     Next Articles

Effects of Fermented Sweet Potato Residue on Growth Performance, Slaughter Performance and Meat Quality of Yellow-Feathered Broilers

QIN Jincheng1, LIANG Lifen1, SUN Tao1, YE Quanqing1, CHEN Jing1, BIN Shiyu1,2*   

  1. 1. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China;
    2. Key Laboratory of Ecology of Rare and Endangered Species and Environmented Protection (Guangxi Normal University),
    Ministry of Education, Guilin Guangxi 541006, China
  • Received:2023-05-11 Revised:2023-07-16 Online:2024-05-25 Published:2024-05-31

Abstract: This study was aimed to investigate the effects of different levels fermented sweet potato residue on the growth performance, slaughter performance and meat quality of yellow-feathered broilers. Firstly, the apparent metabolic rates of nutrients in fermented sweet potato residue were determined by strong feeding metabolic test; then, 360 one-day-age yellow-feathered broilers were randomly divided into 4 groups (Ⅰ, II, III, IV), each with 6 replicates and 15 chickens per replicate. The broilers in the test group I were fed a basal diet as control group, during 1 to 21 days of age, the test group II, III and IV were fed with 10、 30 and 50 g·kg-1 fermented sweet potato residue instead of corn in the basic diet, respectively; during 22 to 42 days of age and 43 to 70 days age were fed with 50、 80 and 100 g·kg-1 fermented sweet potato residue instead of corn in the basic diet, respectively. The trial period was 70 days. The results showed that the apparent metabolic rate of nutrients in fermented sweet potato residue of yellow feather broilers was as follow: crude protein 63.67%, crude fat 65.72%, ash 70.85%, crude fiber 72.45% and gross energy 87.93%. Fermented sweet potato residue equivalent instead of corn had no significant effect on average daily gain, average daily feed intake and feed to gain ratio of yellow-feathered broilers (P>0.05). Compared with the control group, the slaughter rate, clearance rate, chest muscle rate, leg muscle rate and abdominal fat rate had no significant effect among the test groups (P>0.05). Group II, III, IV improved the pH values and a* values of the pectoral muscles and leg muscles, reduced the drip loss, shear stress (P>0.05). The cooking loss of pectoral muscles and leg muscles reduced significantly (P<0.05). To sum up, the addition of 50 g·kg-1 to 100 g·kg-1 of fermented sweet potato residue equivalent instead of corn can improve meat quality of yellow-feathered broilers.

Key words: fermented sweet potato residue, yellow-feathered broilers, growth performance, slaughter performance, meat quality

CLC Number:  S831.5
[1] 王曼, 敖翔, 何健. 发酵金银花渣饲料对生长肥育猪生长性能和肉品质的影响[J]. 养猪, 2020(4): 14-16. DOI: 10.3969/j.jssn.1002-1957.2020.04.010.
[2] SURESH G, SANTOS D U, ROUISSI T, et al. In-field poultry tests to evaluate efficacy of bioformulation consisting of enzymes and yeast biomass[J]. Animal Feed Science and Technology, 2020, 262: 114398. DOI: 10.1016/j.anifeedsci.2020.114398.
[3] 陈丹蝶, 彭翔, 张广民, 等. 酶菌复合制剂对肉鸡生长性能、免疫功能和抗氧化功能的影响[J]. 动物营养学报, 2021, 33(10): 5557-5568. DOI: 10.3969/j.issn.1006-267x.2021.10.0160.
[4] 巫梦佳, 陈鲜鑫, 李世易, 等. 茶叶渣菌酶协同发酵饲料对青脚麻鸡生长性能、屠宰性能及肌肉风味的影响[J]. 中国家禽, 2022, 44(1): 43-50. DOI: 10.16372/j.issn.1004-6364.2022.01.007.
[5] ASHAYERIZADEH A, DASTAR B, SHARGH M S, et al. Effects of feeding fermented rapeseed meal on growth performance, gastrointestinal microflora population, blood metabolites,meat quality, and lipid metabolism in broiler chickens[J]. Livestock Science, 2018, 216: 183-190. DOI: 10.1016/j.livsci.2018.08.012.
[6] SOUMEH E A, MOHEBODINI H, TOGHYANI M, et al. Synergistic effects of fermented soybean meal and mannan-oligosaccharide on growth performance, digestive functions,and hepatic gene in broiler chickens[J]. Poultry Science, 2019, 98(12): 6796-6807. DOI: 10.3382/ps/pez409.
[7] 宋秋红, 孟庆翔, 吴浩, 等. 中国北方部分地区马铃薯渣和红薯渣的营养价值评定与比较分析[J]. 中国畜牧兽医学报, 2021, 48(4): 1222-1228. DOI: 10.16431/j.cnki.1671-7236.2021.04.009.
[8] 王微, 梅世慧, 陈江凤, 等. 益生菌固态发酵红薯渣条件的研究[J]. 中国饲料, 2022(13): 137-141. DOI: 10.15906/j.cnki.cn11-2975/s.20221323.
[9] 梁丽芬. 发酵罗汉果渣对肉鸡生长性能、肉品质和肠道功能的影响[D]. 桂林: 广西师范大学, 2022.
[10] LI J T, TAO L J, ZHANG R, et al. Effects of fermented feed on growth performance, nutrient metabolism and cecal microflora of broilers[J]. Animal Bioscience, 2022, 35(4): 596-604. DOI: 10.5713/ab.21.0333.
[11] GOODARZI BOROOJENI F, SENZ M, KOZŁOWSKI K, et al. The effects of Fermentation and enzymatic treatment of pea on nutrient digestibility and growth performance of broilers[J]. Animal, 2017, 11(10): 1698-1707. DOI: 10.1017/S1751731117000787.
[12] GOODARZI BOROOJENI F, KOZŁOWSKI K, JANKOWSKI J, et al. Fermentation and enzymatic treatment of pea for turkey nutrition[J]. Animals Feed Science and Technology, 2018, 237: 78-88. DOI: 10.1016/j.anifeedsci.2018.01.008.
[13] 梁丽芬, 孙涛, 李铁军, 等. 发酵罗汉果渣对黄羽肉鸡生长性能、血清生化指标和肉品质的影响[J]. 动物营养学报, 2022, 34(10): 6514-6526. DOI: 10.3969/j.issn.1006-267x.2022.10.046.
[14] 梁天柱, 梁光哲, 梁志东, 等. 发酵饲料对广西三黄鸡生长性能、屠宰性能和肉品质的影响[J]. 饲料研究, 2021, 44(4): 26-30. DOI: 10.13557/j.cnki.issn1002-2813.2021.04.007.
[15] LI L, LI W F, LIU S Z, et al. Probiotic fermented feed improved the production, health and nutrient utilization of yellow-feathered broilers reared in high altitude in Tibet[J]. British Poulty Science, 2020, 61(6):746-753.DOI: 10.1080/00071668.2020.1801988.
[16] OMAR A E, AL-KHALAIFAH H S, ISMAIL T A, et al. Performance, serum biochemical and immunological parameters, and digestive enzyme and intestinal barrier-related gene of broiler chickens fed fermented fava bean by-products as a substitute for conventional feed[J]. Frontiers Veternary Science, 2021, 8: 696841. DOI: 10.3389/fvets.2021.696841.
[17] 贺腾飞, 龙沈飞, 朴香淑, 等. 生物饲料在肉鸡和猪生产中的应用[J]. 动物营养学报, 2019, 31(7): 2988-2998. DOI: 10.3969/j.issn.1006-267x.2019.07.007.
[18] 孙颢轩, 蔡辉益, 陈志敏, 等. 发酵饲料在肉鸡生产中应用的研究进展[J]. 饲料工业, 2021, 42(17): 8-14. DOI: 10.13302/j.cnki.fi.2021.17.002.
[19] 王琳. 白术多糖、枯草芽孢杆菌对育成鸡生长性能和肠道生理的影响[D]. 保定: 河北农业大学, 2018.
[20] 林谦, 宾石玉, 戴求仲, 等. 益生菌与酶制剂及其协同效应对黄羽肉鸡屠宰性能和免疫器官指数的影响[J]. 中国饲料, 2012(14): 27-30. DOI: 10.3969/j.issn.1004-3314.2012.14.008.
[21] 潘在续, 潘斌, 徐冉, 等. 饲料中使用发酵豆粕对乳鸽生长发育和肉品质的影响[J]. 中国家禽, 2018, 40(16): 29-33. DOI: 10.16372/j.issn.1004-6364.2018.16.006.
[22] 姜莱, 黄煜博, 袁纯纯, 等. 无抗日粮中添加生物发酵饲料对肉鸡生长性能、养分代谢及血清指标的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(5): 628-636. DOI: 10.3785/j.issn.1008-9209.2020.11.051.
[23] 韩启春, 吴国芳, 王磊, 等. 微生物发酵饲料在畜禽养殖中的应用[J]. 家畜生态学报, 2021, 42(1): 83-85. DOI: 10.3969/j.issn.1673-1182.2021.01.016.
[24] LI J J, YANG C W, PENG H, et al. Effects of slaughter age on muscle characteristics and meat quality traits of Da-Heng meat type birds[J]. Animals, 2020, 10(1): 69. DOI: 10.3390/ani10010069.
[25] 孙波, 黄燕, 罗艳, 等. 复合益生菌发酵饲料对纳雍土鸡生长性能、屠宰性能和肉品质的影响[J]. 中国饲料, 2021(2): 37-40. DOI: 10.15906/j.cnki.cn11-2975/s.20210210.
[26] 朱坤, 毛胜勇, 朱崇淼, 等. 发酵饲料对育肥猪生长性能、胴体性状、肉品质、血清生化指标和代谢产物的影响[J].动物营养学报, 2018, 30(10): 4244-4250. DOI: 10.3969/j.issn.1006-267x.2018.10.051.
[27] 高升, 陈哲, 柯慧, 等. 发酵豆粕对肥育黑猪生长性能、胴体性状、肉品质和肌内氨基酸含量的影响[J]. 养猪, 2020(4): 5-8. DOI: 10.3969/j.issn.1002-1957.2020.04.007.
[1] ZHANG Yong-de, LIN Yong, TANG Zhang-sheng, HUANG Yin, YANG Hui-zan, ZENG Lan, CHEN Zhong, PENG Ting, ZHANG Yan. Breeding of Cold Tolerance and Growth Performance of O.mossambicus× O.niloticus Hybrid lines [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 92-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHAO Jie, SONG Shuang, WU Bin. Overview of Image USM Sharpening Forensics and Anti-forensics Techniques[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 1 -16 .
[2] AI Congcong, GONG Guoli, JIAO Xiaoyu, TIAN Lu, GAI Zhongchao, GOU Jingxuan, LI Hui. Komagataella phaffii Serves as a Model Organism for Emerging Basic Research[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 17 -26 .
[3] CAO Lina, BAO Zhenkang, WANG Yan, LI Hongli. A Review of Studies on Nitrogen Loss During the Composting of Chicken Manure[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 27 -33 .
[4] ZHAI Yanhao, WANG Yanwu, LI Qiang, LI Jingkun. Progress of Dissolved Organic Matter in Inland Water by Three-Dimensional Fluorescence Spectroscopy Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 34 -46 .
[5] TIAN Sheng, HU Xiao. Vehicle Trajectory Prediction Based on Transformer Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 47 -58 .
[6] CHEN Li, TANG Mingzhu, GUO Shenghui. Cyber-Physical Systems State Estimation and Actuator Attack Reconstruction of Intelligent Vehicles[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 59 -69 .
[7] YANG Anquan, DAI Hong, ZHAO Qingsong, ZHONG Hao, MA Hui. Two-Stage Robust Optimal Scheduling of Energy Systems in Smart Community Considering Source-Load Uncertainty[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 70 -85 .
[8] LI Chengqian, SHI Chen, DENG Minyi. Study for the Electrocardiographic Signal of Brugada Syndrome Patients Using Cellular Automaton[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 86 -98 .
[9] LÜ Hui, LÜ Weifeng. Fundus Hemorrhagic Spot Detection Algorithm Based on Improved YOLOv5[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 99 -107 .
[10] YI Jianbing, PENG Xin, CAO Feng, LI Jun, XIE Weijia. Research on Point Cloud Registration Algorithm Based on Multi-scale Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 108 -120 .