Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (3): 206-218.doi: 10.16088/j.issn.1001-6600.2023110701

Previous Articles     Next Articles

Analysis of Network Pharmacology of Qianggan Capsulein in Treating Nonalcoholic Fatty Liver Disease

ZHANG Bing1, TANG Xin1, CHEN Cong1, NING Jiayi1, ZHOU Yihuan1, NIAN Siyun2, YU Qiming1,3 *, TAN Xiangduan1*   

  1. 1. College of Pharmacy, Guilin Medical University, Guilin Guangxi 541199, China;
    2. Zhejiang Starry Pharmaceutical Co., Ltd, Xianju Zhejiang 317300, China;
    3. School of Public Health, Guilin Medical University, Guilin Guangxi 541199, China
  • Received:2023-11-07 Revised:2023-12-06 Published:2024-05-31

Abstract: This study preliminarily investigated the potential mechanisms of the Qianggan capsule (QGC) in treating nonalcoholic fatty liver disease (NAFLD) through a combination of multi-target virtual screening, network pharmacology, and in vitro experiment verification. A multi-target virtual screening based on PPARα/γ, FXR and sEH was utilized to select the active ingredients in QGC with therapeutic properties for NAFLD. The systematic pharmacological approach has been used to predict active ingredient targets and disease-relevant targets, and ultimately to screen key targets for disease modulation. Molecular docking and molecular dynamics simulation analysis of key active ingredients and key targets were performed through Discovery Studio 2020 software and Gromacs software. Finally, an experimental verification of the efficacy of the key compounds in the mitigation of hepatocyte steatosis was carried out. The results indicated that 235 active ingredients of QGC and 320 ingredients-disease common targets were identified by multiple-target virtual screening and network pharmacology analysis, respectively. Molecular docking revealed that apigenin, isorhamnetin, rosmarinic acid, physcion, and luteolin showed strong binding capacity to PTPN1, PPARα, PPARγ, and AR, respectively. Molecular dynamics simulations further verified that compounds such as rosmarinic acid and physcion had good binding stability with key targets. In vitro testing showed that the five key active ingredients could improve the steatosis of HepG2 cells. Notably, rosmarinic acid, physcion, and isorhamnetin exhibited the highest potency among them. This study provides a theoretical basis for the development and application of QGC in the treatment of NAFLD through multi-level discussions.

Key words: Qianggan capsule, nonalcoholic fatty liver disease, multi-target virtual screening, network pharmacology, mechanism

CLC Number:  R285
[1] LAZARUS J V, MARK H E, ANSTEE Q M, et al. Advancing the global public health agenda for NAFLD: a consensus statement[J]. Nature Reviews Gastroenterology & Hepatology, 2022, 19: 60-78. DOI: 10.1038/s41575-021-00523-4.
[2] ESKRIDGE W, VIERLING J M, GOSBEE W, et al. Screening for undiagnosed non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH): a population-based risk factor assessment using vibration controlled transient elastography (VCTE)[J]. Plos One, 2021, 16: e0260320. DOI: 10.1371/journal.pone.0260320.
[3] CARIELLO M, PICCININ E, MOSCHETTA A. Transcriptional regulation of metabolic pathways via lipid-sensing nuclear receptors PPARs, FXR, and LXR in NASH[J].Cellular and Molecular Gastroenterology and Hepatology, 2021, 11: 1519-1539. DOI: 10.1016/j.jcmgh.2021.01.012.
[4] JAIN M R, GIRI S R, BHOI B, et al. Dual PPARα/γ agonist saroglitazar improves liver histopathology and biochemistry in experimental NASH models[J].Liver International, 2018, 38: 1084-1094. DOI: 10.1111/liv.13634.
[5] KAUL U, PARMAR D, MANJUNATH K, et al. New dual peroxisome proliferator activated receptor agonist-Saroglitazar in diabetic dyslipidemia and non-alcoholic fatty liver disease: integrated analysis of thereal-world evidence[J]. Cardiovascular Diabetology, 2019, 18: 80. DOI: 10.1186/s12933-019-0884-3.
[6] SUN L L, CAI J, GONZALEZ F J. The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer[J].Nature Reviews. Gastroenterology & Hepatology, 2021, 18(5): 335-347. DOI: 10.1038/s41575-020-00404-2.
[7] FIORUCCI S, BIAGIOLI M, SEPE V, et al. Bile acid modulators for the treatment of nonalcoholic steatohepatitis (NASH)[J].Expert Opinion on Investigational Drugs, 2020, 29: 623-632. DOI: 10.1080/13543784.2020.1763302.
[8] SCHMIDT J, ROTTER M, WEISER T, et al. A dual modulator of farnesoid X receptor and soluble epoxide hydrolase to counter nonalcoholic steatohepatitis[J].Journal of Medicinal Chemistry, 2017, 60(18): 7703-7724. DOI: 10.1021/acs.jmedchem.7b00398.
[9] YOUNOSSI Z, ANSTEE Q M, MARIETTI M, et al. Global burden ofNAFLD and NASH: trends, predictions, risk factors and prevention[J]. Nature Reviews Gastroenterology & Hepatology, 2018, 15(1): 11-20. DOI: 10.1038/nrgastro.2017.109.
[10] ZHOU H L, MA C, WANG C, et al. Research progress in use of traditional Chinese medicine monomer for treatment of non-alcoholic fatty liver disease[J].European Journal of Pharmacology, 2021, 898: 173976. DOI: 10.1016/j.ejphar.2021.173976.
[11] 丁向春, 马丽娜, 张 栩. 强肝胶囊对慢性肝病肝纤维化指标的影响[J]. 中国中西医结合消化杂志, 2003, 11(6): 351-352. DOI: 10.3969/j.issn.1671-038X.2003.06.011.
[12] 柳琳琳, 毛德文, 吕建林, 等. 强肝胶囊对非酒精性脂肪性肝病患者疗效及安全性的Meta分析[J]. 中成药, 2018, 40(8): 1715-1720. DOI: 10.3969/j.issn.1001-1528.2018.08.009.
[13] 郝丽红. 强肝胶囊对非酒精性脂肪肝患者临床症状改善情况及肝功能的影响[J]. 实用临床医药杂志, 2015, 19(1): 126-127. DOI: 10.7619/jcmp.201501040.
[14] 李 凯, 李爱秀, 靳玉瑞, 等. 天然产物来源的抗HIV-多靶点抑制剂研究进展[J]. 中草药, 2015, 46(12): 1840-1848. DOI: 10.7501/j.issn.0253-2670.2015.12.025.
[15] 梁林盼, 凌雪, 方姣, 等. 基于网络药理学和分子对接探讨瑶山甜茶治疗2型糖尿病的作用机制[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 143-154. DOI: 10.16088/j.issn.1001-6600.2021112401.
[16] 张 琴, 张陆勇, 江振洲. 过氧化物酶体增殖物激活受体激动剂安全性研究进展[J]. 中国药物警戒, 2023, 20(8): 950-955. DOI: 10.19803/j.1672-8629.20230001.
[17] SUN C P, ZHANG X Y, MORISSEAU C, et al. Discovery of soluble epoxide hydrolase inhibitors from chemical synthesis and natural products[J]. Journal of Medicinal Chemistry, 2021, 64(1): 184-215. DOI: 10.1021/acs.jmedchem.0c01507.
[18] 郑维艳, 曹坤芳. 未来气候变化对四种木姜子地理分布的影响[J]. 广西植物, 2020, 40(11): 1584-1594. DOI: 10.11931/guihaia.gxzw201904020.
[19] 赵丽萍, 程阳阳, 范田运, 等. 全新结构吲哚类生物碱的合成及降甘油三酯活性研究[J]. 药学学报, 2022, 57(2):433-440. DOI: 10.16438/j.0513-4870.2021-1439.
[20] YOUNOSSI Z M. Non-alcoholic fatty liver disease:a global public health perspective[J]. Journal of Hepatology, 2019, 70(3): 531-544. DOI: 10.1016/j.jhep.2018.10.033.
[21] GALLARDO-RINCÓN H, CANTORAL A, ARRIETA A, et al. Type 2 diabetes in Latin America and the Caribbean: regional and country comparison on prevalence, trends, costs and expanded prevention[J]. Primary Care Diabetes, 2021, 15(2): 352-359. DOI: 10.1016/j.pcd.2020.10.001.
[22] 白丽华. 强肝胶囊联合二甲双胍治疗非酒精性脂肪肝疗效观察[J]. 现代中西医结合杂志, 2016, 25(15): 1667-1668, 1674. DOI: 10.3969/j.issn.1008-8849.2016.15.025.
[23] 郭彦伸, 郭宗儒. 多靶点药物分子设计[J]. 药学学报, 2009, 44(3): 276-281. DOI: 10.16438/j.0513-4870.2009.03.016.
[24] LI Z T, ZHANG F X, FAN C L, et al. Discovery of potential Q-marker of traditional Chinese medicine based on plant metabolomics and network pharmacology: periplocae cortex as an example[J]. Phytomedicine, 2021, 85: 153535. DOI: 10.1016/j.phymed.2021.153535.
[25] WANG X, WANG Z Y, ZHENG J H, et al. TCM network pharmacology: a new trend towards combining computational, experimental and clinical approaches[J]. Chinese Journal of Natural Medicines, 2021, 19: 1-11. DOI: 10.1016/S1875-5364(21)60001-8.
[26] MUZUROVIC′ E, MIKHAILIDIS D P, MANTZOROS C. Non-alcoholic fatty liver disease, insulin resistance, metabolic syndrome and their association with vascular risk[J]. Metabolism, 2021, 119: 154770. DOI: 10.1016/j.metabol.2021.154770.
[27] YAMAGISHI S, MATSUI T. Role of receptor for advanced glycation end products (RAGE) in liver disease[J]. European Journal of Medical Research, 2015, 20(1): 15. DOI: 10.1186/s40001-015-0090-z.
[28] HYOGO H, YAMAGISHI S I. Advanced glycation end products (AGEs) and their involvement in liver disease[J]. Current Pharmaceutical Design, 2008, 14: 969-972. DOI: 10.2174/138161208784139701.
[29] BASTA G, NAVARRA T, DE SIMONE P, et al. What is the role of the receptor for advanced glycation end products-ligand axis in liver injury?[J]. Liver Transplantation, 2011, 17: 633-640. DOI: 10.1002/lt.22306.
[30] ZHANG T P, HU J J, WANG X M, et al. MicroRNA-378 promotes hepatic inflammation and fibrosis via modulation of the NF-κB-TNFα pathway[J]. Journal of Hepatology, 2019, 70: 87-96. DOI: 10.1016/j.jhep.2018.08.026.
[31] MOHALLEM R, ARYAL U K. Regulators of TNFα mediated insulin resistance elucidated by quantitative proteomics[J]. Scientific Reports, 2020, 10: 20878. DOI: 10.1038/s41598-020-77914-1.
[32] WANDRER F, LIEBIG S, MARHENKE S, et al. TNF-Receptor-1 inhibition reduces liver steatosis, hepatocellular injury and fibrosis in NAFLD mice[J]. Cell Death & Disease, 2020, 11: 212. DOI: 10.1038/s41419-020-2411-6.
[33] NIETO-VAZQUEZ I, FERNÁNDEZ-VELEDO S, DE ALVARO C, et al. Protein-tyrosine phosphatase 1B-deficient myocytes show increased insulin sensitivity and protection against tumor necrosis factor-α-induced insulin resistance[J]. Diabetes, 2007, 56: 404-413. DOI: 10.2337/db06-0989.
[34] KERSTEN S, STIENSTRA R. The role and regulation of the peroxisome proliferator activated receptor alpha in human liver [J]. Biochimie, 2017, 136: 75-84. DOI: 10.1016/j.biochi.2016.12.019.
[35] SUN X, ZHANG Y, XIE M L. The role of peroxisome proliferator-activated receptor in the treatment of non-alcoholic fatty liver diseases[J]. Acta Pharmaceutica, 2017, 67: 1-13. DOI: 10.1515/acph-2017-0007.
[36] KRYCER J R, BROWN A J. Cross-talk between the androgen receptor and the liver X receptor: implications for cholesterol homeostasis[J]. The Journal of Biological Chemistry, 2011, 286: 20637-20647. DOI: 10.1074/jbc.M111.227082.
[37] HEO J H, LEE S R, JO S L, et al. Hepatic LKB1 reduces the progression of non-alcoholic fatty liver disease via genomic androgen receptor signaling[J]. International Journal of Molecular Sciences, 2021, 22: 7904. DOI: 10.3390/ijms22157904.
[38] ZHANG S, ZHENG L L, DONG D S, et al. Effects of flavonoids from Rosa laevigata Michx fruit against high-fat diet-induced non-alcoholic fatty liver disease in rats[J]. Food Chemistry, 2013, 141: 2108-2116. DOI: 10.1016/j.foodchem.2013.05.019.
[39] LIU N, FENG J, LU X Y, et al. Isorhamnetin inhibits liver fibrosis by reducing autophagy and inhibiting extracellular matrix formation via the TGF-β1/Smad3 and TGF-β1/p38 MAPK pathways[J]. Mediators of Inflarnmation, 2019, 2019: 6175091. DOI: 10.1155/2019/6175091.
[40] 黄丽君, 卢启明, 麦平, 等. 迷迭香酸改善小鼠肝功能,炎症水平及肝纤维化的研究[J]. 甘肃科技纵横, 2017, 46(10): 86-88. DOI: 10.3969/j.issn.1672-6375.2017.10.024.
[41] ZHAO Y L, WANG J B, ZHOU G D,et al. Investigations of free anthraquinones from rhubarb against alpha-naphthylisothiocyanate-induced cholestatic liver injury in rats[J]. Basic & Clinical Pharmacology & Toxicology, 2009, 104(6): 463-469. DOI: 10.1111/j.1742-7843.2009.00389.x.
[42] 王 新, 张 磊, 蔡 皓, 等. 木犀草素改善高脂饮食诱导的小鼠非酒精性脂肪肝[J]. 合肥工业大学学报(自然科学版), 2016, 39: 994-997. DOI: 10.3969/j.issn.1003-5060.2016.07.025.
[43] BIOLATO M, MANCA F, MARRONE G, et al. Intestinal permeability after Mediterranean diet and low-fat diet in non-alcoholic fatty liver disease[J]. World Journal of Gastroenterology, 2019, 25: 509-520. DOI: 10.3748/wjg.v25.i4.509.
[44] 陈 聪, 周香辉, 张 兵, 等. 基于网络药理学及计算机辅助药物设计研究护肝宁片治疗非酒精性脂肪性肝病的作用机制[J]. 药学学报, 2023, 58: 695-710. DOI: 10.16438/j.0513-4870.2022-1046.
[1] TIAN Sheng, HU Xiao. Vehicle Trajectory Prediction Based on Transformer Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 47-58.
[2] LI Li, LI Haoze, LI Tao. Multi-primary-node Byzantine Fault-Tolerant Consensus Mechanism Based on Raft [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 121-130.
[3] XU Lunhui, LI Jinlong, LI Ruonan, CHEN Junyu. Missing Traffic Data Recovery for Road Network Based on Dynamic Generative Adversarial Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 30-40.
[4] WANG Fan, WANG Can, GAN Youchun, HE Xuhui, ZHANG Xuefei, ZHANG Yu, YU Yazhou. Multi-distributed Energy Storage Trading Mechanism Based on On-chain and Off-chain Collaboration [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 39-53.
[5] XIAO Yuting, LÜ Xiaoqi, GU Yu, LIU Chuanqiang. Classification of Diabetic Retinopathy Based on Split Residual Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 91-101.
[6] XI Lingfei, Yilihamu Yaermaimaiti, LIU Yajie. Surface Defect Detection Method for Aluminum Profile Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 111-119.
[7] WU Huijie, HUANG Xiaomei, LIANG Fenlan, HUANG Xin, LEI Mengying, ZHOU Yanlin, LIU Xuemei, WANG Gang. Identification of Chemical Consituents and Network Pharmacology Research of Rhododendron molle G. Don Root [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 147-155.
[8] SONG Guanwu, CHEN Zhiming, LI Jianjun. Remote Sensing Image Classification with Cascade Attention Based on ResNet-50 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 80-91.
[9] GUO Jialiang, JIN Ting. Semantic Enhancement-Based Multimodal Sentiment Analysis [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 14-25.
[10] WU Zhengqing, CAO Hui, LIU Baokai. Chinese Fake Review Detection Based on Attention Convolutional Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 26-36.
[11] WU Zixian, CHENG Jun, FU Jianling, ZHOU Xinwen, XIE Jialong, NING Quan. Analysis of PI-based Event-Triggered Control Design for Semi-Markovian Power Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 76-85.
[12] CHEN Fukun, CHEN Xingxing. Research Progress of α-Fe2O3-Based Z-Scheme Heterojunction Photocatalysts [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 12-24.
[13] LIANG Jian, WU Liang, SU Rui, SONG Quansheng, CHEN Feihu. Research Progress on Molecular Mechanism of Total Flavones of Rhizoma drynariae Regulating Osteoporosis [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 25-32.
[14] TANG Houqing, XIN Binbin, ZHU Hongyu, YI Jiawei, ZHANG Dongdong, WU Xinzhang, SHUANG Feng. Rolling Bearing Fault Diagnosis Based on Multi-scale Attentional Inverted Residual Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 109-122.
[15] HUANG Yeqi, WANG Mingwei, YAN Rui, LEI Tao. Surface Quality Detection of Diamond Wire Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 123-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!