Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (2): 200-215.doi: 10.16088/j.issn.1001-6600.2023041406

Previous Articles    

Improvement of Screening Method and Device Development of Biocontrol Bacteria for Plant Root Diseases During Growth Period

HUANG Zhiqing1, LIU Yinger1, HUANG Mingli1, CHEN Yinghui1, SHANG Changhua1,2*, LU Zujun1,2*   

  1. 1. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China;
    2. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China
  • Received:2023-04-14 Revised:2023-05-07 Published:2024-04-22

Abstract: The current indoor screening methods for biocontrol bacteria tend to ignore the basic role of plants; to overcome this drawback, this paper compares the methods of indoor screening for biocontrol bacteria of dual culture, liquid medium screening and seedling substrate screening, then develops a new device based on the improved seedling substrate screening method. This device was modified of the PP-500 mL tissue culture bottle which resistant to high temperature (135 ℃) and high pressure (0.15 MPa). The columnar space of the tissue culture bottle was divided into 3 zones, there were plant growing zone, plant pathogen culture zone, and the candidate biocontrol strain culture one. Each zone was separated by a 0.45 μm nitrate fiber filter membrane. The plant growing zone was open, but the plant pathogen and the candidate biocontrol strain culture zones were closed with a lid. In this device, root exudates of plant growing in approximation of natural conditions and soil exudates were used as substrates to screen candidate biocontrol bacteria, so the results obtained were more reliable. The antagonistic effect of pathogen and candidate biocontrol bacteria was reflected by the change of cell density in this device, which was easy to detect and the result was definite. The device had the advantages of simple structure, low cost and convenient operation. It can be used for batch screening of candidate biocontrol bacteria against various plant root pathogens, but not suitable for screening of that against pathogens of leaf and stalk.

Key words: pathogenic fungi, biocontrol bacteria, screening, Pseudomonas aeruginosa, antagonism

CLC Number:  S432; S476
[1] 田书鑫, 刘南南, 王桂清. 对峙培养法在生防菌抑制效果研究中的应用[J]. 河南农业科学, 2019, 48(8): 1-6. DOI: 10.15933/j.cnki.1004-3268.2019.08.001.
[2] MOTA M S, GOMES C B, SOUZA JÚNIOR I T, et al. Bacterial selection for biological control of plant disease: criterion determination and validation[J]. Brazilian Journal of Microbiology, 2017, 48(1): 62-70. DOI: 10.1016/j.bjm.2016.09.003.
[3] WANG L Y, XIE Y S, CUI Y Y, et al. Conjunctively screening of biocontrol agents (BCAs) against fusarium root rot and fusarium head blight caused by Fusarium graminearum[J]. Microbiological Research, 2015, 177: 34-42. DOI: 10.1016/j.micres.2015.05.005.
[4] RAYMAEKERS K, PONET L, HOLTAPPELS D, et al. Screening for novel biocontrol agents applicable in plant disease management: a review[J]. Biological Control, 2020, 144: 104240. DOI: 10.1016/j.biocontrol.2020.104240.
[5] SALES M D C, COSTA H B, FERNANDES P M B, et al. Antifungal activity of plant extracts with potential to control plant pathogens in pineapple[J]. Asian Pacific Journal of Tropical Biomedicine, 2016, 6(1): 26-31. DOI: 10.1016/j.apjtb.2015.09.026.
[6] OMAR S A, ABD-ALLA M H. Biocontrol of fungal root rot diseases of crop plants by the use of rhizobia and bradyrhizobia[J]. Folia Microbiologica, 1998, 43(4): 431-437. DOI: 10.1007/Bf02818587.
[7] ABRAHAM A O, LAING M D, BOWER J P. Isolation and in vivo screening of yeast and Bacillus antagonists for the control of Penicillium digitatum of citrus fruit[J]. Biological Control, 2010, 53(1): 32-38. DOI: 10.1016/j.biocontrol.2009.12.009.
[8] ZHANG X, ZHOU Y Y, LI Y, et al. Screening and characterization of endophytic Bacillus for biocontrol of grapevine downy mildew[J]. Crop Protection, 2017, 96: 173-179. DOI: 10.1016/j.cropro.2017.02.018.
[9] LATZ M A C, JENSEN B, COLLINGE D B, et al. Identification of two endophytic fungi that control Septoria tritici blotch in the field, using a structured screening approach[J]. Biological Control, 2020, 141: 104128. DOI: 10.1016/j.biocontrol.2019.104128.
[10] LI L H, MA J C, LI Y, et al. Screening and partial characterization of Bacillus with potential applications in biocontrol of cucumber Fusarium wilt[J]. Crop Protection, 2012, 35: 29-35.DOI: 10.1016/j.cropro.2011.12.004.
[11] SANTIAGO T R, GRABOWSKI C, ROSSATO M, et al. Biological control of eucalyptus bacterial wilt with rhizobacteria[J]. Biological Control, 2015, 80: 14-22. DOI: 10.1016/j.biocontrol.2014.09.007.
[12] MILUS E A, ROTHROCK C S. Efficacy of bacterial seed treatments for controlling Pythium root rot of winter wheat[J]. Plant Disease, 1997, 81(2): 180-184. DOI: 10.1094/PDIS.1997.81.2.180.
[13] PIASECKA A, JEDRZEJCZAK-REY N, BEDNAREK P. Secondary metabolites in plant innate immunity: conserved function of divergent chemicals[J]. New Phytologist, 2015, 206(3): 948-964. DOI: 10.1111/nph.13325.
[14] HOLTAPPELS D, LAVIGNE R, HUYS I, et al. Protection of phage applications in crop production: a patent landscape[J]. Viruses, 2019, 11(3): 277. DOI: 10.3390/v11030277.
[15] 肖咪云, 阮楚晋, 陈寿昆, 等. 一株产天然蓝色素细菌的分离鉴定[J]. 广西师范大学学报(自然科学版), 2018, 36(4):131-138. DOI: 10.16088/j.issn.1001-6600.2018.04.017.
[16] 刘亭亭. 铜绿假单胞菌抗菌目标活性物质的分离鉴定及其高产工程菌的构建[D]. 桂林: 广西师范大学, 2020.
[17] 张泽, 邓业成, 陈敢, 等. 罗汉果土传病害拮抗真菌的筛选及其抗菌活性研究[J]. 河南农业科学, 2021, 50(6): 91-98. DOI: 10.15933/j.cnki.1004-3268.2021.06.011.
[18] 钟慧, 钟勇, 卿朕, 等. 2种中药植物提取物抑菌活性初步研究[J]. 河南农业科学, 2015, 44(9): 64-68. DOI: 10.15933/j.cnki.1004-3268.2015.09.016.
[19] 王卓妮, 覃艮红, 王丽, 等. 草莓病害拮抗细菌的筛选及其对草莓褐色叶斑病的防效[J]. 中国蔬菜, 2023(2):63-71. DOI: 10.19928/j.cnki.1000-6346.2023.5012.
[20] 潘梦诗, 郭文阳, 张宗源,等. 贝莱斯芽孢杆菌对花生白绢病的防治效果[J]. 生物学杂志, 2022, 39(1):37-41. DOI: 10.3969/j.issn.2095-1736.2022.01.037.
[21] 牟玉梅, 范高领, 邢丹. 辣椒种子拮抗青枯病菌内生细菌的分离、鉴定[J]. 中国瓜菜, 2020, 33(2):42-47. DOI: 10.16861/j.cnki.zggc.2020.0034.
[22] 连芸芸, 李焕宇, 李惠霞,等. 不同催芽处理对辣椒种子发芽的影响[J]. 江苏农业科学, 2021, 49(10):132-135. DOI: 10.15889/j.issn.1002-1302.2021.10.024.
[23] KHALIL M M R, FIERRO-CORONADO R A, PEÑUELAS-RUBIO O, et al. Rhizospheric bacteria as potential biocontrol agents against Fusarium wilt and crown and root rot diseases in tomato[J]. Saudi Journal of Biological Sciences, 2021, 28(12): 7460-7471. DOI: 10.1016/j.sjbs.2021.08.043.
[24] 唐荣莉, 王春萍, 王红娟, 等. 低磷胁迫对辣椒苗期生长和生理特性的影响[J]. 西南农业学报, 2020, 33(9): 1933-1942. DOI: 10.16213/j.cnki.scjas.2020.9.009.
[25] VAN R E T, GIRARD G, LUGTENBERG B J J, et al. Influence of fusaric acid on phenazine-1-carboxamide synthesis and gene expression of Pseudomonas chlororaphis strain PCL1391[J]. Microbiology, 2005, 151(pt 8): 2805-2814. DOI: 10.1099/mic.0.28063-0.
[26] BROECKLING C D, BROZ A K, BERGELSON J, et al. Root exudates regulate soil fungal community composition and diversity[J]. Applied and Environmental Microbiology, 2008, 74(3): 738-744. DOI: 10.1128/AEM.02188-07.
[27] BADRI D V, QUINTANA N, EL KASSISE G, et al. An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota[J]. Plant Physiology, 2009, 151(4): 2006-2017. DOI: 10.1104/pp.109.147462.
[28] CHAPARRO J M, BADRI D V, BAKKER M G, et al. Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions[J]. Plos One, 2013, 8(2): e55731. DOI: 10.1371/journal.pone.0055731.
[29] 刘东霞, 杨莉, 宋连昭, 等. 三种镰孢菌对不同苜蓿品种致病性的比较研究[J]. 草地学报, 2022, 30(4):909-918. DOI: 10.11733/j.issn.1007-0435.2022.04.016.
[30] CHAPARRO J M, BADRI D V, VIVANCO J M. Rhizosphere microbiome assemblage is affected by plant development[J]. The ISME Journal, 2014, 8(4): 790-803. DOI: 10.1038/ismej.2013.196.
[31] BULGARELLI D, SCHLAEPPI K, SPAEPEN S, et al. Structure and functions of the bacterial microbiota of plants[J]. Annual Review of Plant Biology, 2013, 64(1):807-838. DOI: 10.1146/annurev-arplant-050312-120106.
[32] 吴凤芝, 孟立君, 文景芝. 黄瓜根系分泌物对枯萎病菌菌丝生长的影响[J]. 中国蔬菜, 2002(5):26-27. DOI: 10.3969/j.issn.1000-6346.2002.05.012.
[33] STEINKELLNER S, MAMMERLER R, VIERHEILIG H. Microconidia germination of the tomato pathogen Fusarium oxysporum in the presence of root exudates[J]. Journal of Plant Interactions, 2005, 1(1):23-30. DOI: 10.1080/17429140500134334.
[34] 王刚正, 罗义, 李佳璐, 等. 毛木耳子实体蛛网病的病害特征及致病菌Cladobotryum cubitense的生理特性和防控策略[J]. 菌物学报, 2019, 38(3): 341-348.DOI: 10.13346/j.mycosystema.180270.
[35] CHAREST P M, OUELLETTE G B, PAUZÉ F J. Cytological observations of early infection process by Fusarium oxysporum f. sp. radicis-lycopersici in tomato plants[J]. Canadian Journal of Botany, 1984, 62(6): 1232-1244. DOI: 10.1139/b84-166.
[36] 吴红淼, 林文雄. 药用植物连作障碍研究评述和发展透视[J]. 中国生态农业学报 (中英文), 2020, 28(6): 775-793. DOI: 10.13930/j.cnki.cjea.190760.
[37] WU H M, QIN X J, WANG J Y, et al. Rhizosphere responses to environmental conditions in Radix pseudostellariae under continuous monoculture regimes[J]. Agriculture, Ecosystems & Environment, 2019, 270/271: 19-31. DOI: 10.1016/j.agee.2018.10.014.
[38] MA L, ZHENG S C, ZHANG T K, et al. Effect of nicotine from tobacco root exudates on chemotaxis, growth, biocontrol efficiency, and colonization by Pseudomonas aeruginosa NXHG29[J]. Antonie Van Leeuwenhoek, 2018, 111(7): 1237-1257. DOI: 10.1007/s10482-018-1035-7.
[39] SHORESH M, HARMAN G E, MASTOURI F. Induced systemic resistance and plant responses to fungal biocontrol agents[J]. Annual Review of Phytopathology, 2010, 48(1): 21-43. DOI: 10.1146/annurev-phyto-073009-114450.
[1] DAI Mingyao, LI Yashi, HUANG Xinni, XIAO Jun, HUANG Zhiqing, LÜ Chunmeng, LU Zujun. Effects of phzR Gene of Pseudomonas aeruginosa on Biofilm Gene Expression and Cell Motility [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 161-174.
[2] XU Ping, ZHONG Simin, LI Binbin, XIONG Wenjun. Conditional Independence Screening in Sparse Ultra-high Dimensional Nonparametric Additive Models [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 100-107.
[3] TIAN Zhentao, ZHANG Junjian. Quantile Feature Screening for Ultra High Dimensional Censored Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 99-111.
[4] XIAO Miyun, SUN Menglong, RUAN Chujin, CHEN Shoukun, LIU Yuhua, LU Zujun. Inhibitory Effect of Biocontrol Bacterium 2016NX1 on Plant Pathogenic Fungi and Optimization of Fermentation Conditions [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 168-178.
[5] LIU Yi,YE Xuemei,XIAO Miyun,L Lijun,HOU Chengyou,LU Zujun. The Preliminary Screening of Hypaphorine High-accumulationStrain by Using the Quick Fluorescent Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 141-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YUAN Jingjing, ZHENG Yuzhao, XU Chenfeng, YIN Tingjie. Advances in Cytoplasmic Delivery Strategies for Non-Endocytosis-Dependent Biomolecules[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 1 -8 .
[2] TU Guangsheng, KONG Yongjun, SONG Zhechao, YE Kang. Research Progress and Technical Difficulties of Reversible Data Hiding in Encrypted Domain[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 1 -15 .
[3] YANG Yangyang, ZHU Zhenting, YANG Cuiping, LI Shihao, ZHANG Shu, FAN Xiulei, WAN Lei. Research Progress of Anaerobic Digestion Pretreatment of Excess Activated Sludge Based on Bibliometric Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 16 -29 .
[4] XU Lunhui, LI Jinlong, LI Ruonan, CHEN Junyu. Missing Traffic Data Recovery for Road Network Based on Dynamic Generative Adversarial Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 30 -40 .
[5] YANG Hai, XIE Yaqin. Regional Energy Storage Allocation Strategy of 5G Base Station Based on Floyd Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 41 -54 .
[6] YAN Wenwen, WEN Zhong, WANG Shuang, LI Guoxiang, WANG Boyu, WU Yi. AA-CAES Plant and Integrated Demand Response Based Wind Abandonment and Consumption Strategy for the Heating Period[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 55 -68 .
[7] GAN Youchun, WANG Can, HE Xuhui, ZHANG Yu, ZHANG Xuefei, WANG Fan, YU Yazhou. Joint Optimal Operation of Integrated Electricity-Hydrogen-Heat Energy System Based on Concentrating Solar Power Plant and Flexible Load[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 69 -83 .
[8] WANG Xuyang, WANG Changrui, ZHANG Jinfeng, XING Mengyi. Multimodal Sentiment Analysis Based on Cross-Modal Cross-Attention Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 84 -93 .
[9] WANG Weiduo, WANG Yisong, YANG Lei. Descriptive Solution of the Answer Set Programming for Cloud Resource Scheduling[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 94 -104 .
[10] YU Qian, CHEN Qingfeng, HE Naixu, HAN Zongzhao, LU Jiahui. Genetic Algorithm for Community Detection Accelerated by Matrix Operations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 105 -119 .