Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (6): 113-121.doi: 10.16088/j.issn.1001-6600.2023020101
Previous Articles Next Articles
JIANG Wei, LI Yuhan, LI Hongying*
[1] LANDKOF N. Foundations of modern potential theory[M]. Berlin: Springer-Verlag, 1972. [2] CAFFARELLI L, VALDINOCI E. Uniform estimates and limiting arguments for nonlocal minimal surfaces[J]. Calculus of Variations and Partial Differential Equations, 2011, 41(1): 203-240. DOI: 10.1007/s00526-010-0359-6. [3] LASKIN N. Fractional quantum mechanics and Lévy path integrals[J]. Physics Letters A, 2000, 268(4/5/6): 298-305. DOI: 10.1016/S0375-9601(00)00201-2. [4] LIU H D. Positive solutions of an asymptotically periodic Schrödinger-Poisson system with critical exponent[J]. Nonlinear Analysis: Real World Applications, 2016, 32: 198-212. DOI: 10.1016/j.nonrwa.2016.04.007. [5] LI N, HE X M. Existence and multiplicity results for some Schrödinger-Poisson system with critical growth[J]. Journal of Mathematical Analysis and Applications, 2020, 488(2): 124071. DOI: 10.1016/j.jmaa.2020.124071. [6] DOU X L, HE X M. Ground states for critical fractional Schrödinger-Poisson systems with vanishing potentials[J]. Mathematical Methods in the Applied Sciences, 2022:45(16): 9089-9110. DOI: 10.1002/mma.8294. [7] 张炫, 冯晓晶. 带临界项的分数阶薛定谔-泊松系统的非平凡解[J]. 纺织高校基础科学学报, 2021, 34(4): 95-101. DOI: 10.13338/j.issn.1006-8341.2021.04.014. [8] 郭凯利, 冯晓晶. 具有临界项的分数阶薛定谔-泊松系统的解[J]. 山东大学学报(理学版), 2021, 56(6): 56-63. DOI: 10.6040/j.issn.1671-9352.0.2020.713. [9] 张鑫瑞, 贺小明, 屈思琪. 具有临界频率的分数阶薛定谔-泊松系统的半经典基态解的多重性[J]. 中央民族大学学报(自然科学版), 2021, 30(1): 21-27. DOI: 10.3969/j.issn.1005-8036.2021.01.005. [10] 张鑫瑞. 分数阶薛定谔-泊松系统解的存在性, 集中性与多解性的研究[D]. 北京: 中央民族大学, 2021. [11] 冯晓晶. 带有双临界项的薛定谔-泊松系统非平凡解的存在性[J]. 数学物理学报, 2020, 40(6): 1590-1598. DOI: 10.3969/j.issn.1003-3998.2020.06.013. [12] HE X M. Positive solutions for fractional Schrödinger-Poisson systems with doubly critical exponents[J]. Applied Mathematics Letters, 2021, 120: 107190. DOI: 10.1016/j.aml.2021.107190. [13] FENG X J. Nontrivial solution for Schrödinger-Poisson equations involving the f ractional Laplacian with critical exponent[J]. Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A. Matemáticas, 2021, 115(1): 10. DOI: 10.1007/s13398-020-00953-w. [14] FENG X J, YANG X. Existence of ground state solutions for fractional Schrödinger-Poisson systems with doubly critical growth[J]. Mediterranean Journal of Mathematics, 2021, 18(2): 41. DOI: 10.1007/S00009-020-01660-X. [15] FENG X J. Ground state solutions for Schrödinger-Poisson systems involving the fractional Laplacian with critical exponent[J]. Journal of Mathematical Physics, 2019, 60(5): 051511. DOI: 10.1063/1.5088710. [16] JIANG W, LIAO J F. Multiple positive solutions for fractional Schrödinger-Poisson system with doubly critical exponents[J]. Qualitative Theory of Dynamical Systems, 2023, 22(1): 25. DOI: 10.1007/S12346-022-00726-3. [17] WILLEM M. Minimax Theorems[M]. Boston: Birkhauser, 1996. DOI: 10.1007/978-1-4612-4146-1. [18] BRÉZIS H, LIEB E. A relation between pointwise convergence of functions and convergence of functionals[J]. Proceedings of the American Mathematical Society, 1983, 88(3): 486-490. DOI: 10.1090/S0002-9939-1983-0699419-3. [19] SERVADEI R, VALDINOCI E. The Brézis-Nirenberg result for the fractional Laplacian[J]. Transactions of the American Mathematical Society, 2015, 367(1): 67-102. DOI: 10.1090/S0002-9947-2014-05884-4. [20] AMBROSETTI A, RABINOWITZ P H. Dual variational methods in critical point theory and applications[J]. Journal of Functional Analysis, 1973, 14(4): 349-381. DOI: 10.1016/0022-1236(73)90051-7. |
[1] | JIANG Yingxing, HUANG Wennian. Ground State Solutions for the NonlinearSchrödinger-Maxwell Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 59-66. |
|