Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (6): 105-112.doi: 10.16088/j.issn.1001-6600.2023030402
Previous Articles Next Articles
GUO Jie, SUO Hongmin*, ZHU Yiying, GUO Jiachao
[1] KIRCHHOFF G. Mechanik[M]. Teubner: Leipzig, 1883. [2] LIAO J F, ZHANG P, LIU J, et al. Existence and multiplicity of positive solutions for a class of Kirchhoff type problems with singularity[J]. Journal of Mathematical Analysis and Applications, 2015, 430(2):1124-1148.DOI:10.1016/j.jmaa.2015.05.038. [3] LI G B, LUO P, PENG S J, et al. A singularly perturbed Kirchhoff problem revisited[J]. Journal of Differential Equations, 2020, 268(2):541-589.DOI:10.1016/j.jde.2019.08.016. [4] HE X M, ZOU W M. Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3[J]. Journal of Differential Equations, 2012, 252(2):1813-1834.DOI:10.1016/j.jde.2011.08.035. [5] 王跃, 叶红艳, 雷俊, 等. 带线性项Kirchhoff型问题的无穷多古典解[J]. 广西师范大学学报(自然科学版), 2020, 38(6):65-73.DOI:10.16088/j.issn.1001-6600.2020.06.008. [6] 姜影星, 黄文念. 非线性薛定谔-麦克斯韦方程的基态解[J]. 广西师范大学学报(自然科学版), 2018, 36(4):59-66.DOI:10.16088/j.issn.1001-6600.2018.04.008. [7] PERERA K, ZHANG Z T. Nontrivial solutions of Kirchhoff-type problems via the Yang index[J]. Journal of Differential Equations, 2006, 221(1):246-255.DOI:10.1016/j.jde.2005.03.006. [8] 吉蕾. 高维空间中带临界指数的非齐次Kirchhoff型方程的正解[J]. 西南师范大学学报(自然科学版), 2020, 45(2):20-25.DOI:10.13718/j.cnki.xsxb.2020.02.004. [9] WANG Y, SUO H M, LEI C Y. Multiple positive solutions for a nonlocal problem involving critical exponent[J]. Electronic Journal of Differential Equations, 2017, 2017(275):1-11. [10] CHEN P, LIU X C. Multiplicity of solutions to kirchhoff type equations with critical sobolev exponent[J]. Communications on Pure and Applied Analysis, 2018, 17(1): 113-125.DOI:10.3934/cpaa.2018007. [11] 曾兰, 唐春雷. 带有临界指数的Kirchhoff型方程正解的存在性[J]. 西南师范大学学报(自然科学版), 2016, 41(4): 29-34.DOI:10.13718/j.cnki.xsxb.2016.04.007. [12] LIU Z S, GUO S J, FANG Y Q. Positive solutions of Kirchhoff type elliptic equations in R4 with critical growth[J]. Mathematische Nachrichten, 2017, 290(2/3):367-381.DOI:10.1002/mana.201500358. [13] ANELLO G. A uniqueness result for a nonlocal equation of Kirchhoff type and some related open problem[J]. Journal of Mathematical Analysis and Applications, 2011, 373(1):248-251.DOI:10.1016/j.jmaa.2010.07.019. [14] 成艺群, 滕凯民. 非线性临界Kirchhoff型问题的正基态解[J]. 数学物理学报, 2021, 41(3): 666-685.DOI:10.3969/j.issn.1003-3998.2021.03.008. [15] LEI C Y, LIAO J F, TANG C L. Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents[J]. Journal of Mathematical Analysis and Applications, 2015, 421(1):521-538.DOI:10.1016/j.jmaa.2014.07.031. [16] CAO X F, XU J X, WANG J. Multiple positive solutions for Kirchhoff type problems involving concave and critical nonlinearities in R3[EB/OL]. (2016-05-20)[2023-03-04].http://arxiv.org/abs/1605.06404. [17] LI H Y, TANG Y T, LIAO J F. Existence and multiplicity of positive solutions for a class of singular Kirchhoff type problems with sign-changing potential[J]. Mathematical Methods in the Applied Sciences, 2018, 41(8):2971-2986. DOI: 10.1002/mma.4795. [18] LEI C Y, CHU C M, SUO H M. On Kirchhoff type problems involving critical and singular nonlinearities terms[J]. Annales Polonici Mathematici, 2015, 114(3):269-291.DOI:10.4064/ap114-3-5. [19] QIAN X T, CHAO W. Existence of positive solutions for nonlocal problems with indefinite nonlinearity[J]. Boundary Value Problems, 2020, 2020(1): 40. DOI:10.1186/s136 61-020-01343-2. [20] FURTADO M F, RUVIARO R, DA SILVA J P P. Two solutions for an elliptic equation with fast increasing weight and concave-convex nonlinearities[J]. Journal of Mathematical Analysis and Applications, 2014, 416(2):698-709.DOI:10.1016/j.jmaa.2014.02.068. [21] DE PAIVA F O. Nonnegative solutions of elliptic problems with sublinear indefinite nonlinearity[J]. Journal of Functional Analysis, 2011, 261(9):2569-2586.DOI:10.1016/j.jfa.2011.07.002. [22] BREZIS H, NIRENBERG L. Positive solutions of nonlinear elliptic equations involving critical sobolev exponents[J]. Communications on Pure and Applied Mathematics, 1983, 36(4):437-477.DOI:10.1002/cpa.3160360405. [23] GHOUSSOUB N, YUAN C. Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents[J]. Transactions of the American Mathematical Society, 2000, 352(12):5703-5743.DOI:10.2307/221908. [24] EKELAND I. On the variational principle[J]. Journal of Mathematical Analysis and Applications, 1974, 47(2):324-353. DOI:10.1016/0022-247X(74)90025-0. |
[1] | JIANG Wei, LI Yuhan, LI Hongying. Two Positive Solutions for a Class of Concave-convex Fractional Schrödinger-Poisson System with Doubly Critical Exponents [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 113-121. |
[2] | WANG Junfeng, LI Ping. Shortest-path Exponent and Backbone Exponentof Explosive Percolation Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 81-86. |
|