|
广西师范大学学报(自然科学版) ›› 2017, Vol. 35 ›› Issue (3): 14-21.doi: 10.16088/j.issn.1001-6600.2017.03.002
陈春燕, 许志鹏, 邝华*
CHEN Chunyan, XU Zhipeng, KUANG Hua*
摘要: 为了研究驾驶员的自主特性对交通流的影响,考虑实际交通中驾驶员对车速变化的连续记忆效应,本文提出一个改进的自稳定控制驾驶跟驰模型,以期提高交通流的稳定性。通过线性稳定性分析,得到新模型的稳定性条件为a>2V′(b)(1-λγ);与Bando的优化速度(optimal velocity,OV)模型相比,自由流稳定的敏感系数临界值ac变小,稳定区域明显增加。数值模拟结果表明,驾驶员的连续记忆效应能够显著地提高车流的稳定性,并有效地抑制交通流堵塞。
中图分类号:
[1] ZHANG H M. Driver memory, traffic viscosity and a viscous vehicular traffic flow model[J]. Transportation Research Part B, 2003, 37(1): 27-41. [2] ZHANG Peng, LIU Ruxun, WONG S C. High-resolution numerical approximation of traffic flow problems with variable lanes and free-flow velocities[J]. Physical Review E, 2005, 71(5): 056704. [3] TANG Tieqiao, CHEN Liang, WU Yonghong, et al. A macro traffic flow model accounting for real-time traffic state[J]. Physica A, 2015, 437: 55-67. [4] LIU Huaqing, CHENG Rongjun, ZHU Keqiang, et al. The study for continuum model considering traffic jerk effect[J]. Nonlinear Dynamics, 2016, 83(1/2): 57-64. [5] NAGEL K, SCHRECKENBERG M. A cellular automaton model for freeway traffic[J]. J Phys I France, 1992, 2: 2221-2229. [6] 邝华, 孔令江, 刘慕仁. 多速混合车辆单车道元胞自动机交通流模型的研究[J]. 物理学报, 2004,53(9): 2894-2898. [7] LI Qilang, WONG S C, MIN Jie, et al. A cellular automata traffic flow model considering the heterogeneity of acceleration and delay probability[J]. Physica A, 2016, 456: 128-134. [8] 张卫华, 颜冉, 冯忠祥, 等. 雨天高速公路车辆换道模型研究[J]. 物理学报, 2016, 65(6): 064501. [9] BANDO M, HASEBE K, NAKAYAMA A, et al. Dynamical model of traffic congestion and numerical simulation[J]. Physical Review E, 1995, 51(2): 1035-1042. [10] HELBING D, TILCH B. Generalized force model of traffic dynamics[J]. Physical Review E, 1998, 58(1): 133-138. [11] JIANG Rui, WU Qingsong, ZHU Zuojin. Full velocity difference model for a car-following theory[J]. Physical Review E, 2001, 64 (1): 017101(4). [12] 王涛, 高自友, 赵小梅. 多速度差模型及稳定性分析[J]. 物理学报, 2006, 55(2): 634-640. [13] 孙棣华, 康义容, 李华民. 驾驶员预估效应下车流能耗演化机理研究[J]. 物理学报, 2015, 64(15): 154503. [14] SUN Dihua, KANG Yirong, YANG Shuhong. A novel car following model considering average speed of preceding vehicles group[J]. Physica A, 2015, 436: 103-109. [15] CHEN Jianzhong, LIU Ronghui, NGODUY Dong, et al. A new multi-anticipative car-following model with consideration of the desired following distance[J]. Nonlinear Dynamics, 2016, 85(4): 2705-2717. [16] LI Zhipeng, XU Xun, XU Shangzhi, et al. A heterogeneous traffic flow model consisting of two types of vehicles with different sensitivities[J]. Communications in Nonlinear Science and Numerical Simulation, 2017, 42: 132-145. [17] GE Hongxia, DAI Shiqiang, DONG Liyun. An extended car-following model based on intelligent transportation system application[J]. Physica A, 2006, 365(2): 543-548. [18] TANG Tieqiao, SHI Weifang, SHANG Huayan, et al. A new car-following model with consideration of inter-vehicle communication[J]. Nonlinear Dynamics, 2014, 76(4): 2017-2023. [19] TANG Tieqiao, SHI Weifang, SHANG Huayan, et al. An extended car-following model with consideration of the reliability of inter-vehicle communication[J]. Measurement, 2014, 58: 286-293. [20] KUANG Hua, XU Zhipeng, LI Xingli, et al. An extended car-following model accounting for the average headway effect in intelligent transportation system[J]. Physica A, 2017, 471: 778-787. [21] YU Shaowei, SHI Zhongke. The effects of vehicular gap changes with memory on traffic flow in cooperative adaptive cruise control strategy[J]. Physica A, 2015, 428: 206-223. [22] YU Shaowei, ZHAO Xiangmo, XU Zhigang, et al. The effects of velocity difference changes with memory on the dynamics characteristics and fuel economy of traffic flow[J]. Physica A, 2016, 461: 613-628. [23] PENG Guanghan, LU Weizhen, HE Hongdi, et al. Nonlinear analysis of a new car-following model accounting for the optimal velocity changes with memory[J]. Communications in Nonlinear Science and Numerical Simulation, 2016, 40: 197-205. [24] LI Zhipeng, LI Wenzhong, XU Shangzhi, et al. Analyses of vehicle’s self-stabilizing effect in an extended optimal velocity model by utilizing historical velocity in an environment of intelligent transportation system[J]. Nonlinear Dynamics, 2015, 80(1/2): 529-540. |
[1] | 凌风如, 张超英, 陈燕雁, 覃章荣. LBM中基于半程反弹的统一边界条件研究[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 70-78. |
[2] | 梅春草,韦笃取*,罗晓曙. 分布式发电系统中感性负载的稳定性研究[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 50-55. |
[3] | 冯金明,李遵先. 一类具扩散的传染病模型的稳定性分析[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 63-68. |
[4] | 李谊纯, 董德信, 王一兵. 北仑河口及其邻近海域物质输运滞留时间研究[J]. 广西师范大学学报(自然科学版), 2015, 33(2): 56-63. |
[5] | 许伦辉, 游黄阳. 基于特性和影响因素分析的短时交通流预测[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 1-5. |
[6] | 余艳, 白克钊, 孔令江. 行人与机动车相互干扰的元胞自动机模拟研究[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 6-10. |
[7] | 蒋晓峰, 许伦辉, 朱悦. 基于SVM短时交通流量预测[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 13-17. |
[8] | 许伦辉, 倪艳明, 罗强, 黄艳国. 基于最小安全距离的车辆换道模型研究[J]. 广西师范大学学报(自然科学版), 2011, 29(4): 1-6. |
[9] | 潘江洪, 白克钊, 邝华, 孔令江. 一种考虑能见度影响的元胞自动机交通流模型[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 1-4. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |