广西师范大学学报(自然科学版) ›› 2017, Vol. 35 ›› Issue (3): 14-21.doi: 10.16088/j.issn.1001-6600.2017.03.002

• • 上一篇    下一篇

连续记忆效应的交通流跟驰建模与稳定性分析

陈春燕, 许志鹏, 邝华*   

  1. 广西师范大学物理科学与技术学院,广西桂林541004
  • 出版日期:2017-07-25 发布日期:2018-07-25
  • 通讯作者: 邝华(1978—),男,广西桂林人,广西师范大学教授,博士。E-mail: khphy@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(11262005);广西自然科学基金(2014GXNSFAA118007);广西高校科研一般项目(YB2014034);广西研究生教育创新计划(YCSW2017096,YCSZ2016039)

Modeling and Stability Analysis of Traffic Flow Car-following Modelwith Continuous Memory Effect

CHEN Chunyan, XU Zhipeng, KUANG Hua*   

  1. College of Physical Science and Technology, Guangxi Normal University, Guilin Guangxi 541004, China
  • Online:2017-07-25 Published:2018-07-25

摘要: 为了研究驾驶员的自主特性对交通流的影响,考虑实际交通中驾驶员对车速变化的连续记忆效应,本文提出一个改进的自稳定控制驾驶跟驰模型,以期提高交通流的稳定性。通过线性稳定性分析,得到新模型的稳定性条件为a>2V′(b)(1-λγ);与Bando的优化速度(optimal velocity,OV)模型相比,自由流稳定的敏感系数临界值ac变小,稳定区域明显增加。数值模拟结果表明,驾驶员的连续记忆效应能够显著地提高车流的稳定性,并有效地抑制交通流堵塞。

关键词: 交通流, 跟驰模型, 稳定性分析, 数值模拟

Abstract: In order to investigate the impacts of driver’s self-determination characteristic on traffic flow, an extended self-stabilizing control driving car-following model is proposed by considering the driver’s continuous memory for vehicle velocity changes in real traffic. It is expected that the stability of traffic flow can be improved. The stability condition a>2V′(b)(1-λγ) of this model is obtained by using the linear stability analysis. Compared with the Bando’s optimal velocity (OV) model, it can be found that the critical value ac of the sensitivity in the new model decreases and the stable region is apparently enlarged. The numerical simulation results show that the effect of driver’s continuous memory can obviously improve the stability of traffic flow, and effectively suppress the traffic jams.

Key words: traffic flow, car-following model, stability analysis, numerical simulation

中图分类号: 

  • U491.1
[1] ZHANG H M. Driver memory, traffic viscosity and a viscous vehicular traffic flow model[J]. Transportation Research Part B, 2003, 37(1): 27-41.
[2] ZHANG Peng, LIU Ruxun, WONG S C. High-resolution numerical approximation of traffic flow problems with variable lanes and free-flow velocities[J]. Physical Review E, 2005, 71(5): 056704.
[3] TANG Tieqiao, CHEN Liang, WU Yonghong, et al. A macro traffic flow model accounting for real-time traffic state[J]. Physica A, 2015, 437: 55-67.
[4] LIU Huaqing, CHENG Rongjun, ZHU Keqiang, et al. The study for continuum model considering traffic jerk effect[J]. Nonlinear Dynamics, 2016, 83(1/2): 57-64.
[5] NAGEL K, SCHRECKENBERG M. A cellular automaton model for freeway traffic[J]. J Phys I France, 1992, 2: 2221-2229.
[6] 邝华, 孔令江, 刘慕仁. 多速混合车辆单车道元胞自动机交通流模型的研究[J]. 物理学报, 2004,53(9): 2894-2898.
[7] LI Qilang, WONG S C, MIN Jie, et al. A cellular automata traffic flow model considering the heterogeneity of acceleration and delay probability[J]. Physica A, 2016, 456: 128-134.
[8] 张卫华, 颜冉, 冯忠祥, 等. 雨天高速公路车辆换道模型研究[J]. 物理学报, 2016, 65(6): 064501.
[9] BANDO M, HASEBE K, NAKAYAMA A, et al. Dynamical model of traffic congestion and numerical simulation[J]. Physical Review E, 1995, 51(2): 1035-1042.
[10] HELBING D, TILCH B. Generalized force model of traffic dynamics[J]. Physical Review E, 1998, 58(1): 133-138.
[11] JIANG Rui, WU Qingsong, ZHU Zuojin. Full velocity difference model for a car-following theory[J]. Physical Review E, 2001, 64 (1): 017101(4).
[12] 王涛, 高自友, 赵小梅. 多速度差模型及稳定性分析[J]. 物理学报, 2006, 55(2): 634-640.
[13] 孙棣华, 康义容, 李华民. 驾驶员预估效应下车流能耗演化机理研究[J]. 物理学报, 2015, 64(15): 154503.
[14] SUN Dihua, KANG Yirong, YANG Shuhong. A novel car following model considering average speed of preceding vehicles group[J]. Physica A, 2015, 436: 103-109.
[15] CHEN Jianzhong, LIU Ronghui, NGODUY Dong, et al. A new multi-anticipative car-following model with consideration of the desired following distance[J]. Nonlinear Dynamics, 2016, 85(4): 2705-2717.
[16] LI Zhipeng, XU Xun, XU Shangzhi, et al. A heterogeneous traffic flow model consisting of two types of vehicles with different sensitivities[J]. Communications in Nonlinear Science and Numerical Simulation, 2017, 42: 132-145.
[17] GE Hongxia, DAI Shiqiang, DONG Liyun. An extended car-following model based on intelligent transportation system application[J]. Physica A, 2006, 365(2): 543-548.
[18] TANG Tieqiao, SHI Weifang, SHANG Huayan, et al. A new car-following model with consideration of inter-vehicle communication[J]. Nonlinear Dynamics, 2014, 76(4): 2017-2023.
[19] TANG Tieqiao, SHI Weifang, SHANG Huayan, et al. An extended car-following model with consideration of the reliability of inter-vehicle communication[J]. Measurement, 2014, 58: 286-293.
[20] KUANG Hua, XU Zhipeng, LI Xingli, et al. An extended car-following model accounting for the average headway effect in intelligent transportation system[J]. Physica A, 2017, 471: 778-787.
[21] YU Shaowei, SHI Zhongke. The effects of vehicular gap changes with memory on traffic flow in cooperative adaptive cruise control strategy[J]. Physica A, 2015, 428: 206-223.
[22] YU Shaowei, ZHAO Xiangmo, XU Zhigang, et al. The effects of velocity difference changes with memory on the dynamics characteristics and fuel economy of traffic flow[J]. Physica A, 2016, 461: 613-628.
[23] PENG Guanghan, LU Weizhen, HE Hongdi, et al. Nonlinear analysis of a new car-following model accounting for the optimal velocity changes with memory[J]. Communications in Nonlinear Science and Numerical Simulation, 2016, 40: 197-205.
[24] LI Zhipeng, LI Wenzhong, XU Shangzhi, et al. Analyses of vehicle’s self-stabilizing effect in an extended optimal velocity model by utilizing historical velocity in an environment of intelligent transportation system[J]. Nonlinear Dynamics, 2015, 80(1/2): 529-540.
[1] 凌风如, 张超英, 陈燕雁, 覃章荣. LBM中基于半程反弹的统一边界条件研究[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 70-78.
[2] 梅春草,韦笃取*,罗晓曙. 分布式发电系统中感性负载的稳定性研究[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 50-55.
[3] 冯金明,李遵先. 一类具扩散的传染病模型的稳定性分析[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 63-68.
[4] 李谊纯, 董德信, 王一兵. 北仑河口及其邻近海域物质输运滞留时间研究[J]. 广西师范大学学报(自然科学版), 2015, 33(2): 56-63.
[5] 许伦辉, 游黄阳. 基于特性和影响因素分析的短时交通流预测[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 1-5.
[6] 余艳, 白克钊, 孔令江. 行人与机动车相互干扰的元胞自动机模拟研究[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 6-10.
[7] 蒋晓峰, 许伦辉, 朱悦. 基于SVM短时交通流量预测[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 13-17.
[8] 许伦辉, 倪艳明, 罗强, 黄艳国. 基于最小安全距离的车辆换道模型研究[J]. 广西师范大学学报(自然科学版), 2011, 29(4): 1-6.
[9] 潘江洪, 白克钊, 邝华, 孔令江. 一种考虑能见度影响的元胞自动机交通流模型[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发