广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (5): 105-115.doi: 10.16088/j.issn.1001-6600.2022110901

• 研究论文 • 上一篇    下一篇

赤泥-海藻酸钠水凝胶对水中Pb(Ⅱ)的吸附性能

王威1,2, 邓华1,2*, 胡乐宁1,2, 李杨3   

  1. 1.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学),广西 桂林 541006;
    2.广西师范大学 环境与资源学院,广西 桂林 541006;
    3.广西壮族自治区环境保护科学研究院,广西 南宁 530022
  • 收稿日期:2022-11-09 修回日期:2023-03-04 发布日期:2023-10-09
  • 通讯作者: 邓华(1977—),女,湖南祁阳人,广西师范大学教授,博士。E-mail:denghua@mailbox.gxnu.edu.cn
  • 基金资助:
    珍稀濒危动植物生态与环境保护教育部重点实验室研究基金(ERESEP2021Z15);国家重点研发计划项目(2018YFC1802604,2018YFC1802606)

Adsorption Performance of Red Mud-Sodium Alginate Hydrogel on Pb(Ⅱ) in Water

WANG Wei1,2, DENG Hua1,2*, HU Lening1,2, LI Yang3   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection(Guangxi Normal University) Guilin Guangxi 541006, China;
    2. College of Environment and Resources, Guangxi Normal University, Guilin Guangxi 541006, China;
    3. Guangxi Zhuang Autonomous Region Academy of Environmental Protection Science, Nanning Guangxi 530022, China
  • Received:2022-11-09 Revised:2023-03-04 Published:2023-10-09

摘要: 以赤泥和海藻酸钠为原料,采用交联反应的方法制备赤泥-海藻酸钠水凝胶(RMSA)。通过批量实验考察溶液初始pH、吸附温度、吸附时间、初始浓度以及多元重金属体系对RMSA吸附Pb(Ⅱ)效果的影响,并结合XRD、FTIR和SEM-EDS表征分析,研究其对Pb(Ⅱ)的吸附特性。实验结果表明,拟二级动力学吸附模型和Langmuir吸附等温模型能够更好地描述RMSA对Pb(Ⅱ)的吸附过程,该吸附过程属于单分子层化学吸附。在pH=6,温度为25 ℃,吸附时间为900 min,Pb(Ⅱ)初始浓度为30~900 mg/L的最佳条件下,RMSA对Pb(Ⅱ)的最大理论吸附量为454.54 mg/g。RMSA在多元重金属体系吸附实验中对Pb(Ⅱ)的吸附更具选择性。分析表明,离子交换是RMSA吸附Pb(Ⅱ)的主要机理。此外,RMSA经过5次循环实验仍能保持较高的吸附性能,在经济适用性方面具有较好的应用前景。

关键词: 赤泥, 水凝胶, Pb(Ⅱ), 海藻酸钠, 吸附

Abstract: Red mud-sodium alginate hydrogel (RMSA) was prepared by cross-linking reaction using red mud and sodium alginate as raw materials. The effects of initial pH of solution, adsorption temperature, adsorption time, initial concentration and multiple heavy metal systems on the adsorption effect of RMSA on Pb(Ⅱ) were investigated by batch experiments and combined with XRD, FTIR and SEM-EDS characterization analysis, its adsorption characteristics on Pb(Ⅱ) was studied. The experimental results showed that the proposed secondary kinetic adsorption model and Langmuir adsorption isotherm model could better describe the adsorption process of RMSA on Pb(Ⅱ), which belonged to single molecular layer chemisorption. The maximum theoretical adsorption capacity of RMSA on Pb(Ⅱ) was 454.54 mg/g under the optimal conditions of pH=6, temperature of 25 ℃, adsorption time of 900 min and initial concentration of Pb(Ⅱ) of 30-900 mg/L. The adsorption of RMSA on Pb(Ⅱ) was more selective in the adsorption experiments of multivariate heavy metal systems. The analysis showed that ion exchange was the main mechanism of Pb(Ⅱ) adsorption by RMSA. In addition, RMSA still maintained high adsorption performance in the five-cycle experiment, which had a good application prospect in terms of economic applicability.

Key words: red mud, hydrogel, Pb(Ⅱ), sodium alginate, adsorption

中图分类号:  X53

[1] QIAO A H, CUI M, HUANG R L, et al. Advances in nanocellulose-based materials as adsorbents of heavy metals and dyes[J]. Carbohydrate Polymers, 2021, 272: 118471. DOI: 10.1016/j.carbpol.2021.118471.
[2] BOLISETTY S, PEYDAYESH M, MEZZENGA R. Sustainable technologies for water purification from heavy metals: review and analysis[J]. Chemical Society Reviews, 2019, 48(2): 463-487. DOI: 10.1039/c8cs00493e.
[3] ASSI M A, HEZMEE M N M, HARON A W, et al. The detrimental effects of lead on human and animal health[J]. Veterinary World, 2016, 9(6): 660-671. DOI: 10.14202/vetworld.2016.660-671.
[4] 邓华,李秋燕,周瑞爽,等.短毛蓼粉末对Cd(Ⅱ)和Cu(Ⅱ)的吸附研究[J].广西师范大学学报(自然科学版),2021,39(3):102-112.DOI:10.16088/j.issn.1001-6600.2020061103.
[5] AHMAD Z, GAO B, MOSA A, et al. Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass[J]. Journal of Cleaner Production, 2018, 180: 437-449. DOI: 10.1016/j.jclepro.2018.01.133.
[6] CHEN Q Y, YAO Y, LI X Y, et al. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates[J]. Journal of Water Process Engineering, 2018, 26: 289-300. DOI: 10.1016/j.jwpe.2018.11.003.
[7] CASTRO-MUÑOZ R, GONZÁLEZ-MELGOZA L L, GARCÍA-DEPRAECT O. Ongoing progress on novel nanocomposite membranes for the separation of heavy metals from contaminated water[J]. Chemosphere, 2021, 270: 129421. DOI: 10.1016/j.chemosphere.2020.129421.
[8] ZHANG Y X, LUO J, ZHANG H S, et al. Synthesis and adsorption performance of three-dimensional gels assembled by carbon nanomaterials for heavy metal removal from water: a review[J]. Science of the Total Environment, 2022, 852: 158201. DOI: 10.1016/j.scitotenv.2022.158201.
[9] LIN J Y, KIM M, LI D, et al. The removal of phosphate by thermally treated red mud from water: the effect of surface chemistry on phosphate immobilization[J]. Chemosphere, 2020, 247: 125867. DOI: 10.1016/j.chemosphere.2020.125867.
[10] POWER G, GRÄFE M, KLAUBER C. Bauxite residue issues: I. Current management, disposal and storage practices[J]. Hydrometallurgy, 2011, 108(1/2): 33-45. DOI: 10.1016/j.hydromet.2011.02.006.
[11] KHAIRUL M A, ZANGANEH J, MOGHTADERI B. The composition, recycling and utilisation of Bayer red mud[J]. Resources, Conservation and Recycling, 2019, 141: 483-498. DOI: 10.1016/j.resconrec.2018.11.006.
[12] LUU T T, DINH V P, NGUYEN Q H, et al. Pb(II) adsorption mechanism and capability from aqueous solution using red mud modified by chitosan[J]. Chemosphere, 2022, 287(Pt 3): 132279. DOI: 10.1016/j.chemosphere.2021.132279.
[13] BAI X S, LIN J W, ZHANG Z B, et al. Immobilization of lead, copper, cadmium, nickel, and zinc in sediment by red mud: adsorption characteristics, mechanism, and effect of dosage on immobilization efficiency[J]. Environmental Science and Pollution Research International, 2022, 29(34): 51793-51814. DOI: 10.1007/s11356-022-19506-2.
[14] YANG T X, WANG Y F, SHENG L X, et al. Enhancing Cd(II) sorption by red mud with heat treatment: Performance and mechanisms of sorption[J]. Journal of Environmental Management, 2020, 255: 109866. DOI: 10.1016/j.jenvman.2019.109866.
[15] TANDEKAR S, KORDE S, JUGADE R M. Red mud-chitosan microspheres for removal of coexistent anions of environmental significance from water bodies[J]. Carbohydrate Polymer Technologies and Applications, 2021, 2: 100128. DOI: 10.1016/j.carpta.2021.100128.
[16] NAGA BABU A, KRISHNA MOHAN G V, KALPANA K, et al. Removal of lead from water using calcium alginate beads doped with hydrazine sulphate-activated red mud as adsorbent[J]. Journal of Analytical Methods in Chemistry, 2017, 2017: 4650594. DOI: 10.1155/2017/4650594.
[17] NAGA BABU A, KRISHNA MOHAN G V, KALPANA K, et al. Removal of fluoride from water using H2O2-treated fine red mud doped in Zn-alginate beads as adsorbent[J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 906-916. DOI: 10.1016/j.jece.2018.01.014.
[18] OMRANI N, NEZAMZADEH-EJHIEH A. Focus on scavengers’ effects and GC-MASS analysis of photodegradation intermediates of sulfasalazine by Cu2O/CdS nanocomposite[J]. Separation and Purification Technology, 2020, 235: 116228. DOI: 10.1016/j.seppur.2019.116228.
[19] WANG Q R, ZHENG C L, SHEN Z X, et al. Polyethyleneimine and carbon disulfide co-modified alkaline lignin for removal of Pb2+ ions from water[J]. Chemical Engineering Journal, 2019, 359: 265-274. DOI: 10.1016/j.cej.2018.11.130.
[20] 邓华,张俊渝,黄瑞,等.竹炭负载氧化锌对Cr(Ⅵ)的吸附性能和机理[J].广西师范大学学报(自然科学版),2023,41(1):131-142.DOI:10.16088/j.issn.1001-6600.2022010501.
[21] 刘江龙,郭焱,何小山,等.硅烷化赤泥的制备及其对水中铅离子吸附性能分析[J].环境工程,2019,37(11):36-44.DOI:10.13205/j.hjgc.201911006.
[22] 刘睿,刘立恒,黄蓉,等.硫酸钙/污泥基生物炭对水中铅的吸附性能研究[J].工业水处理,2021,41(5):46-52.DOI:10.11894/iwt.2020-0733.
[23] ZHANG S Y, ARKIN K, ZHENG Y X, et al. Preparation of a composite material based on self-assembly of biomass carbon dots and sodium alginate hydrogel and its green, efficient and visual adsorption performance for Pb2+[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 106921. DOI: 10.1016/j.jece.2021.106921.
[24] 艾硕,玉万国,黄承都.羧甲基纤维素钠炭化物吸附水中铅离子研究[J].水处理技术,2022,48(10):57-62.DOI:10.16796/j.cnki.1000-3770.2022.10.011.
[25] MOSLEH N, NAJMI M, PARANDI E, et al. Magnetic sporopollenin supported polyaniline developed for removal of Lead ions from wastewater: kinetic, isotherm and thermodynamic studies[J]. Chemosphere, 2022, 300: 134461. DOI: 10.1016/j.chemosphere.2022.134461.
[26] MINALE M, GU Z L, GUADIE A, et al. Hydrous manganese dioxide modified poly(sodium acrylate) hydrogel composite as a novel adsorbent for enhanced removal of tetracycline and lead from water[J]. Chemosphere, 2021, 272: 129902. DOI: 10.1016/j.chemosphere.2021.129902.
[27] YANG P, GUO D B, CHEN Z H, et al. Removal of Cr(VI) from aqueous solution using magnetic biochar synthesized by a single step method[J]. Journal of Dispersion Science and Technology, 2017, 38(11): 1665-1674. DOI: 10.1080/01932691.2016.1272058.
[28] ALBADARIN A B, MANGWANDI C, AL-MUHTASEB A H, et al. Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent[J]. Chemical Engineering Journal, 2012, 179: 193-202. DOI: 10.1016/j.cej.2011.10.080.
[29] CASTALDI P, SILVETTI M, SANTONA L, et al. XRD, FTIR, and thermal analysis of bauxite ore-processing waste (red mud) exchanged with heavy metals[J]. Clays and Clay Minerals, 2008, 56(4): 461-469. DOI: 10.1346/CCMN.2008.0560407.
[30] KARZAR JEDDI M, MAHKAM M. Magnetic nano carboxymethyl cellulose-alginate/chitosan hydrogel beads as biodegradable devices for controlled drug delivery[J]. International Journal of Biological Macromolecules, 2019, 135: 829-838. DOI: 10.1016/j.ijbiomac.2019.05.210.
[31] PUTTIPIPATKHACHORN S, PONGJANYAKUL T, PRIPREM A. Molecular interaction in alginate beads reinforced with sodium starch glycolate or magnesium aluminum silicate, and their physical characteristics[J]. International Journal of Pharmaceutics, 2005, 293(1/2): 51-62. DOI: 10.1016/j.ijpharm.2004.12.006.
[32] LI J W, MA J W, CHEN S J, et al. Adsorption of lysozyme by alginate/graphene oxide composite beads with enhanced stability and mechanical property[J]. Materials Science and Engineering: C, 2018, 89: 25-32. DOI: 10.1016/j.msec.2018.03.023.
[33] SAHU R C, PATEL R K, RAY B C. Neutralization of red mud using CO2 sequestration cycle[J]. Journal of Hazardous Materials, 2010, 179(1/3): 28-34. DOI: 10.1016/j.jhazmat.2010.02.052.
[34] LIU X M, ZHANG N, SUN H H, et al. Structural investigation relating to the cementitious activity of bauxite residue-red mud[J]. Cement and Concrete Research, 2011, 41(8): 847-853. DOI: 10.1016/j.cemconres.2011.04.004.
[35] YADAV V S, PRASAD M, KHAN J, et al. Sequestration of carbon dioxide (CO2) using red mud[J]. Journal of Hazardous Materials, 2010, 176(1/2/3): 1044-1050. DOI: 10.1016/j.jhazmat.2009.11.146.
[36] MILONJIĆ S K, RUVARAC A L, ŠUŠIĆ M V. The heat of immersion of natural magnetite in aqueous solutions[J]. Thermochimica Acta, 1975, 11(3): 261-266. DOI: 10.1016/0040-6031(75)85095-7.
[37] WANG L, SHI C X, WANG L, et al. Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: a review[J]. Nanoscale, 2020, 12(8): 4790-4815. DOI: 10.1039/c9nr09274a.
[38] ZHANG X, LV L, QIN Y Z, et al. Removal of aqueous Cr(VI) by a magnetic biochar derived from Melia azedarach wood[J]. Bioresource Technology, 2018, 256: 1-10. DOI: 10.1016/j.biortech.2018.01.145.
[39] 崔姗姗,王宁,顾汉念.CaCl2废液在赤泥脱碱中的应用[J].化工环保,2016,36(5):553-556.DOI:10.3969/j.issn.1006-1878.2016.05.015.
[40] PARADIS M, DUCHESNE J, LAMONTAGNE A, et al. Long-term neutralisation potential of red mud bauxite with brine amendment for the neutralisation of acidic mine tailings[J]. Applied Geochemistry, 2007, 22(11): 2326-2333. DOI: 10.1016/j.apgeochem.2007.04.021.
[41] PAPAGEORGIOU S K, KATSAROS F K, KOUVELOS E P, et al. Heavy metal sorption by calcium alginate beads from Laminaria digitata[J]. Journal of Hazardous Materials, 2006, 137(3): 1765-1772. DOI: 10.1016/j.jhazmat.2006.05.017.
[1] 徐湘薇, 张继福, 张云, 胡云峰. 深海芽孢杆菌Bacillus sp. LM-24对结晶紫的吸附研究[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 221-231.
[2] 陈孟林, 陈煜航, 冯金宇, 高澍, 黄智, 宿程远, 林香凤. 高温氧气流改性海泡石处理印染废水性能及再生研究[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 232-241.
[3] 邓华, 张俊渝, 黄瑞, 王威, 胡乐宁. 竹炭负载氧化锌对Cr(Ⅵ)的吸附性能和机理[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 131-142.
[4] 邓华, 李秋燕, 周瑞爽, 庞舒月, 刘金玉, 康彩艳. 短毛蓼粉末对Cd(Ⅱ)和Cu(Ⅱ)的吸附研究[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 102-112.
[5] 王娜娜, 张翔. PAN基弱碱性离子交换纤维对Zn2+吸附性能研究[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 86-94.
[6] 林海蛟, 张继福, 张云, 胡云峰. 基于大孔吸附树脂先交联后吸附法固定化脂肪酶[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 100-108.
[7] 吴娟,邹华,梅平. 羧酸盐型Gemini表面活性剂的表面性能研究[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 78-86.
[8] 秦芳, 蒋钦凤, 王婷, 王玉荣, 冯吉庆, 陈金毅. Mg/Al水滑石和Zn/Al水滑石对微囊藻的去除性能研究[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 115-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 董淑龙, 马姜明, 辛文杰. 景观视觉评价研究进展与趋势——基于CiteSpace的知识图谱分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 1 -13 .
[2] 郭嘉梁, 靳婷. 基于语义增强的多模态情感分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 14 -25 .
[3] 吴正清, 曹晖, 刘宝锴. 基于注意力卷积神经网络的中文虚假评论检测[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 26 -36 .
[4] 梁正友, 蔡俊民, 孙宇, 陈磊. 结合残差动态图卷积与特征强化的点云分类[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 37 -48 .
[5] 欧阳舒歆, 王洺钧, 荣垂田, 孙华波. 基于改进LSTM的多维QAR数据异常检测[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 49 -60 .
[6] 李依洋, 曾才斌, 黄在堂. 分数Brown运动驱动的具有壁附着的恒化器模型的随机吸引子[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 61 -68 .
[7] 李鹏博, 李永祥. 外部区域上p-Laplace方程的径向对称解[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 69 -75 .
[8] 吴子弦, 成军, 符坚铃, 周心雯, 谢佳龙, 宁全. 基于PI的Semi-Markovian电力系统事件触发控制设计分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 76 -85 .
[9] 程蕾, 闫普选, 杜博豪, 叶思, 邹华红. MOF-2的水相合成及其热稳定和介电性能研究[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 86 -95 .
[10] 刘美余, 张进燕, 周童曦, 廖广凤, 杨新洲, 卢汝梅. 匙羹藤中一个新的C21甾体糖苷及其降血糖活性[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 96 -104 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发