|
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (3): 91-104.doi: 10.16088/j.issn.1001-6600.2022100805
邓希桢, 蒋明, 岑明灿*, 罗玉玲
DENG Xizhen, JIANG Ming, CEN Mingcan*, LUO Yuling
摘要: 随着人工智能、5G、物联网等技术的快速发展,我国在网络安全领域遭受境外攻击的现象也愈发严重,勒索软件攻击事件已显著增加,给国家、企业和个人造成巨大的数据损失和经济损失。为了有效地对勒索软件家族进行分类,本文提出一种基于熵图像静态分析技术的勒索软件分类方法,直接利用从勒索软件二进制文件中提取的熵特征进行分类,同时提出一种名为Ran-GAN的数据增强方法以解决勒索软件家族间数据不平衡问题。本文提出的方法将注意力机制引入VGG16神经网络架构中,用于提升网络的特征提取能力。实验结果表明,本文提出的方法在14种勒索软件家族上可达97.16%的准确率以及97.12%的加权平均F1-score。与传统可视化方法相比,本文提出的方法在4种评价指标下均明显优于传统的可视化方法,同时,与其他神经网络方法相比,勒索软件的检测性能都有显著提升。
中图分类号: TP309
[1] BRIDGES L. The changing face of malware[J]. Network Security, 2008, 2008(1): 17-20. DOI: 10.1016/S1353-4858(08)70010-2. [2] 腾讯研究院. 2021年勒索攻击特征与趋势研究白皮书[R]. 武汉: 腾讯研究院, 2021. [3] NATARAJ L, KARTHIKEYAN S, JACOB G, et al. Malware images: visualization and automatic classification[C]//Proceedings of the 8th International Symposium on Visualization for Cyber Security. New York, NY: Association for Computing Machinery, 2011: 4. DOI: 10.1145/2016904.2016908. [4] KANCHERLA K, MUKKAMALA S. Image visualization based malware detection[C]//2013 IEEE Symposium on Computational Intelligence in Cyber Security (CICS). Piscataway, NJ: IEEE, 2013: 40-44. DOI: 10.1109/CICYBS.2013.6597204. [5] SAXE J, BERLIN K. Deep neural network based malware detection using two dimension binary program features[C]//2015 10th International Conference on Malicious and Unwanted Software (MALWARE). Piscataway, NJ: IEEE, 2015: 11-20. DOI: 10.1109/MALWARE.2015.7413680. [6] 郭春, 陈长青, 申国伟, 等. 一种基于可视化的勒索软件分类方法[J]. 信息网络安全, 2020, 20(4): 31-39. DOI: 10.3969/j.issn.1671-1122.2020.04.004. [7] XIAO G Q, LI J N, CHEN Y D, et al. MalFCS:an effective malware classification framework with automated feature extraction based on deep convolutional neural networks[J]. Journal of Parallel and Distributed Computing, 2020, 141: 49-58. DOI: 10.1016/j.jpdc.2020.03.012. [8] 杨春雨, 徐洋, 张思聪, 等. 一种基于三通道图像的恶意软件分类方法[J]. 武汉大学学报(理学版), 2022, 68(1): 26-34. DOI: 10.14188/j.1671-8836.2021.2005. [9] 王方伟, 柴国芳, 李青茹, 等. 基于参数优化元学习和困难样本挖掘的小样本恶意软件分类方法[J]. 武汉大学学报(理学版), 2022, 68(1):17-25. DOI: 10.14188/j.1671-8836.2021.2008. [10] 陈小寒, 魏书宁, 覃正泽.基于深度学习可视化的恶意软件家族分类[J]. 计算机工程与应用, 2021, 57(22): 131-138. DOI: 10.3778/j.issn.1002-8331.2007-0291. [11] 张英韬, 王宝会.基于图表示学习的恶意软件分类方法[J]. 新型工业化, 2021, 11(10): 91-96. DOI: 10.19335/j.cnki.2095-6649.2021.10.019. [12] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, NJ: IEEE, 2017: 2223-2232. DOI: 10.1109/ICCV.2017.244. [13] VINAYAKUMAR R, SOMAN K P, SENTHIL VELAN K K, et al. Evaluating shallow and deep networks for ransomware detection and classification[C]//2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI). Piscataway, NJ: IEEE, 2017: 259-265. DOI: 10.1109/ICACCI.2017.8125850. [14] 陈长青, 郭春, 崔允贺, 等. 基于API短序列的勒索软件早期检测方法[J]. 电子学报, 2021, 49(3): 586-595. DOI: 10.12263/DZXB.20200623. [15] 汪嘉来, 张超, 戚旭衍, 等. Windows平台恶意软件智能检测综述[J]. 计算机研究与发展, 2021, 58(5): 977-994. DOI: 10.7544/issn1000-1239.2021.20200964. [16] ZHAO S, MA X B, ZOU W, et al. DeepCG:classifying metamorphic malware through deep learning of call graphs[C]//Security and Privacy in Communication Networks. Cham: Springer Nature Switzerland AG, 2019: 171-190. DOI: 10.1007/978-3-030-37228-6_9. [17] 杨望, 高明哲, 蒋婷. 一种基于多特征集成学习的恶意代码静态检测框架[J]. 计算机研究与发展, 2021, 58(5): 1021-1034. DOI: 10.7544/issn1000-1239.2021.20200912. [18] ZHANG B, XIAO W T, XIAO X, et al. Ransomware classification using patch-based CNN and self-attention network on embedded n-grams of opcodes[J]. Future Generation Computer Systems, 2020, 110: 708-720. DOI: 10.1016/j.future.2019.09.025. [19] ZHANG H Q, XIAO X, MERCALDO F, et al. Classification of ransomware families with machine learning based on n-gram of opcodes[J]. Future Generation Computer Systems, 2019, 90: 211-221. DOI: 10.1016/j.future.2018.07.052. [20] 白金荣, 王俊峰, 赵宗渠. 基于PE静态结构特征的恶意软件检测方法[J]. 计算机科学, 2013, 40(1): 122-126. DOI: 10.3969/j.issn.1002-137X.2013.01.029. [21] 张光华, 高天娇, 陈振国, 等. 基于N-Gram静态分析技术的恶意软件分类研究[J].计算机科学, 2022, 49(8): 336-343. DOI: 10.11896/jsjkx.210900203. [22] CONTI G, DEAN E, SINDA M, et al. Visual reverse engineering of binary and data files[C]//Visualization for Computer Security: LNCS Volume 5210. Berlin: Springer, 2008: 1-17. DOI: 10.1007/978-3-540-85933-8_1. [23] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2022-10-08]. https://arxiv.org/abs/1409.1556v6. DOI: 10.48550/arXiv.1409.1556. [24] WOO S Y, PARK J C, LEE J Y, et al. CBAM: convolutional block attention module[C]//Computer Vision-ECCV 2018: LNCS Volume 11211. Cham: Springer, 2018: 3-19. DOI: 10.1007/978-3-030-01234-2_1. [25] CONTINELLA A, GUAGNELLI A, ZINGARO G, et al. ShieldFS: a self-healing, ransomware-aware filesystem[C]//Proceedings of the 32nd Annual Conference on Computer Security Applications. New York, NY: Association for Computing Machinery, 2016: 336-347. DOI: 10.1145/2991079.2991110. [26] SGANDURRA D, MUÑOZ-GONZÁLEZ L, MOHSEN R, et al. Automated dynamic analysis of ransomware:benefits, limitations and use for detection[EB/OL]. (2016-09-10)[2022-10-08]. https://arxiv.org/abs/1609.03020. DOI: 10.48550/arXiv.1609.03020. [27] HIRANO M, HODOTA R, KOBAYASHI R. RanSAP: an open dataset of ransomware storage access patterns for training machine learning models[J]. Forensic Science International: Digital Investigation, 2022, 40: 301314. DOI: 10.1016/j.fsidi.2021.301314. [28] HU J, SHEN L,ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. DOI: 10.1109/TPAMI.2019.2913372. [29] HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17)[2022-10-08]. https://arxiv.org/abs/1704.04861. DOI: 10.48550/arXiv.1704.04861. [30] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2016: 770-778. DOI: 10.1109/cvpr.2016.90. [31] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2015: 1-9. DOI: 10.1109/cvpr.2015.7298594. [32] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. (2021-06-03)[2022-10-08]. https://arxiv.org/abs/2010.11929. DOI: 10.48550/arXiv.2010.11929. |
[1] | 王利娥, 王艺汇, 李先贤. POI推荐中的多源数据融合和隐私保护方法[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 87-101. |
[2] | 王宇航, 张灿龙, 李志欣, 王智文. 体现用户意图和风格的图像描述生成[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 91-103. |
[3] | 李正光, 陈恒, 林鸿飞. 基于双向语言模型的社交媒体药物不良反应识别[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 40-48. |
[4] | 万黎明, 张小乾, 刘知贵, 宋林, 周莹, 李理. 基于高效通道注意力的UNet肺结节CT图像分割[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 66-75. |
[5] | 张萍, 徐巧枝. 基于多感受野与分组混合注意力机制的肺结节分割研究[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 76-87. |
[6] | 孔亚钰, 卢玉洁, 孙中天, 肖敬先, 侯昊辰, 陈廷伟. 面向强化当前兴趣的图神经网络推荐算法研究[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 151-160. |
[7] | 吴军, 欧阳艾嘉, 张琳. 基于多头注意力机制的磷酸化位点预测模型[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 161-171. |
[8] | 邓文轩, 杨航, 靳婷. 基于注意力机制的图像分类降维方法[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 32-40. |
[9] | 李维勇, 柳斌, 张伟, 陈云芳. 一种基于深度学习的中文生成式自动摘要方法[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 51-63. |
[10] | 王健, 郑七凡, 李超, 石晶. 基于ENCODER_ATT机制的远程监督关系抽取[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 53-60. |
[11] | 武文雅, 陈钰枫, 徐金安, 张玉洁. 基于高层语义注意力机制的中文实体关系抽取[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 32-41. |
[12] | 岳天驰, 张绍武, 杨亮, 林鸿飞, 于凯. 基于两阶段注意力机制的立场检测方法[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 42-49. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |