广西师范大学学报(自然科学版) ›› 2020, Vol. 38 ›› Issue (6): 56-64.doi: 10.16088/j.issn.1001-6600.2020.06.007

• • 上一篇    下一篇

一类分数阶微分方程的反周期边值问题

左佳斌1,2*, 贠永震1   

  1. 1.河海大学理学院, 江苏南京210098;
    2.吉林工程技术师范学院应用理学院, 吉林长春130052
  • 收稿日期:2019-04-24 发布日期:2020-11-30
  • 通讯作者: 左佳斌(1988—), 男, 吉林长春人, 河海大学博士研究生。 E-mail: zuojiabin88@163.com
  • 基金资助:
    中央高校基础研究基金(2019B64714);江苏省研究生科研与实践创新计划(SJKY19-0431);国家重点研究开发项目(2018YFC1508100);国家留学基金(201906710004)

Anti-periodic Boundary Value Problem for a Class of Fractional Differential Equations

ZUO Jiabin1,2*, YUN Yongzhen1   

  1. 1. College of Science, Hohai University, Nanjing Jiangsu 210098, China;
    2. Faculty of Applied Sciences, Jilin Engineering Normal University, Changchun Jilin 130052, China
  • Received:2019-04-24 Published:2020-11-30

摘要: 研究一类具有p-Laplace算子的非线性分数阶微分方程反周期边值问题解的存在性。首先给出该边值问题的Green函数;然后利用p-Laplace算子的性质和不动点定理得到该边值问题解的存在性结果;最后给出2个例子验证得到的结果。

关键词: 分数阶微分方程, 反周期边值问题, 解的存在性, p-Laplace算子

Abstract: The existence of solutions for a class of anti-periodic boundary value problem of nonlinear fractional differential equations with p-Laplace operator is investigated.Firstly, the Green function of the fractional boundary value problem is given. Then, by using the properties of p-Laplace operator and some fixed point theorems,some results on the existence of solutions are obtained. Finally, two examples are given to confirm the results.

Key words: fractional differential equations, anti-periodic boundary value problem, existence of solutions, p-Laplace operator

中图分类号: 

  • O175.8
[1] KILBAS A A, SRIVASTAVA H M,TRUJILLO J J. Theory and applications of fractional differential equations[M]. Amsterdam: Elsevier,2006.
[2] ZHANG X Q,WANG L,SUN Q. Existence of positive solutions for a class of nonlinear fractional differential equations with integral boundary conditions and a parameter[J]. Applied Mathematics and Computation,2014,226(1): 708-718.
[3] 闫荣君,韦煜明,冯春华. 带p-Laplacian算子的时滞分数阶微分方程边值问题3个正解的存在性[J]. 广西师范大学学报(自然科学版),2017,35(3):75-82.
[4] 黄燕萍,韦煜明. 一类分数阶微分方程多点边值问题的多解性[J]. 广西师范大学学报(自然科学版),2018,36(3): 41-49.
[5] 康淑瑰,岳亚卿,郭建敏. 分数阶微分方程奇异系统边值问题正解的存在性[J]. 西南大学学报(自然科学版),2019,41(4): 104-108.
[6] 蔡蕙泽,韩晓玲. 一类非线性分数阶微分方程边值问题正解的存在性[J]. 四川大学学报(自然科学版),2019,56(4): 614-620.
[7] HEDAYATI V, SAMEI M E. Positive solutions of fractional differential equation with two pieces in chain interval and simultaneous Dirichlet boundary conditions[J]. Boundary Value Problems,2019,2019:141.
[8] RAKHSHAN S A,EFFATI S. A generalized Legendre-Gauss collocation method for solving nonlinear fractional differential equations with time varying delays[J]. Applied Numerical Mathematics,2019,146: 342-360.
[9] 康文彦,高巧琴. 一类非线性分数阶微分方程边值问题正解的存在性[J]. 通化师范学院学报(自然科学),2016,37(6): 28-30.
[10] 张红雷,苏莹. 一类无穷区间上分数阶微分方程正解的存在性[J]. 数学的实践与认识,2019,49(8): 226-235.
[11] ZHOU W X,LIU X. Uniqueness on positive solutions for boundary value problem of singularfractional differential equations[J]. Chiness Journal of Engineering Mathematic,2014,31(2): 300-309.
[12] AHMAD B,NIETO J J. Anti-periodic fractional boundary value problems[J]. Computers and Mathematics with Applications,2011,62(3): 1150-1156.
[13] 贠永震,苏有慧,胡卫敏. 一类带有p-Laplacian的分数阶微分方程反周期边值问题解的存在性[J]. 宁夏大学学报(自然科学版),2016,37(3): 5-8,14.
[14] JIANG J. Solvability of anti-periodic boundary value problem for coupled system of fractional p-Laplacian equation[J]. Advances in Difference Equations,2015,2015:305.
[15] LIU J H,CHENG S H,ZHANG L T. Anti-periodic mild solutions to semilinear fractional differential equations[J]. Journal of Applied Mathematics and Computing,2015,48(1/2): 381-393.
[16] LI X H,HAN Z L,SUN S R. Anti-periodic boundary value problems for fractional q-difference equations[J]. Journal of Applied Mathematics and Computing,2016,50(1/2): 243-257.
[17] AKTUĞLU H,ÖZARSLAN M A. Solvability of differential equations of order 2<α≤3 involving the p-Laplacian operator with boundary conditions[J]. Advances in Difference Equations,2013, 2013:358
[18] JIN H,LIU W B. On the periodic boundary value problem for Duffing type fractional differentialequation with p-Laplacian operator[J]. Boundary Value Problems,2015,2015:144.
[19] SMART D R. Fixed point theorems[M]. Cambridge: Cambridge University Press,1974.
[20] 贠永震,苏有慧,胡卫敏. 一类具有p-Laplacian 算子的分数阶微分方程反周期边值问题解的存在唯一性[J]. 数学物理学报:A辑,2018,38(6): 1162-1172.
[21] 贠永震,苏有慧,胡卫敏. 一类Caputo分数阶p-Laplace反周期边值问题解的存在性[J]. 西北师范大学学报(自然科学版),2017,53(3): 13-18.
[1] 朱娅萍, 屈国荣, 范江华. 不动点指数法研究拟变分不等式解的存在性[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 79-85.
[2] 黄燕萍, 韦煜明. 一类分数阶微分方程多点边值问题的多解性[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 41-49.
[3] 庞 杨,韦煜明,冯春华. 一类分数阶微分方程两点边值问题正解的存在性[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 68-75.
[4] 闫荣君, 韦煜明, 冯春华. p-Laplacian算子的时滞分数阶微分方程边值问题3个正解的存在性[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 75-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐建闽, 韦佳, 首艳芳. 基于博弈论-云模型的城市道路交通运行状态综合评价[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 1 -10 .
[2] 张灿龙, 李燕茹, 李志欣, 王智文. 基于核相关滤波与特征融合的分块跟踪算法[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 12 -23 .
[3] 许伦辉, 曹宇超, 林培群. 基于融合免疫优化和遗传算法的多应急物资中心选址与调度[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 1 -13 .
[4] 胡锦铭, 韦笃取. 分数阶永磁同步电机的广义同步研究[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 14 -20 .
[5] 朱勇建, 罗坚, 秦运柏, 秦国峰, 唐楚柳. 基于光度立体和级数展开法的金属表面缺陷检测方法[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 21 -31 .
[6] 唐熔钗, 伍锡如. 基于改进YOLO-V3网络的百香果实时检测[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 32 -39 .
[7] 张汝昌, 邱杰, 王明堂, 陈庆锋. 基于自适应局部特征的蛋白质三维结构分类[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 40 -50 .
[8] 陈东, 胡葵. 覆盖Gorenstein AC-平坦维数[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 51 -55 .
[9] 王跃, 叶红艳, 雷俊, 索洪敏. 带线性项Kirchhoff型问题的无穷多古典解[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 65 -73 .
[10] 黄春贤, 周效良. 含等级治疗率与不完全康复率的SIRS模型的分岔分析[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 74 -81 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发