广西师范大学学报(自然科学版) ›› 2019, Vol. 37 ›› Issue (4): 68-73.doi: 10.16088/j.issn.1001-6600.2019.04.008

• • 上一篇    下一篇

基于改进模糊C均值聚类与Otsu的图像分割方法

王勋1, 李廷会1*, 潘骁2, 田宇1   

  1. 1.广西师范大学电子工程学院,广西桂林541004;
    2.广西生态工程职业技术学院汽车与信息工程系,广西柳州545004
  • 收稿日期:2018-11-22 出版日期:2019-10-25 发布日期:2019-11-28
  • 通讯作者: 李廷会(1971—),男(壮族),广西靖西人,广西师范大学教授,博士。E-mail:tinghuili@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(21327007);广西师范大学青年基金(2017QN002);高新企业技术发展(20170113-1)

Image Segmentation Method Based on Improved Fuzzy C-means Clustering and Otsu Maximum Variance

WANG Xun1, LI Tinghui1*, PAN Xiao2, TIAN Yu1   

  1. 1.College of Electronic Engineering, Guangxi Normal University,Guilin Guangxi 541004,China;
    2.Department of Automotive and Information Engineering, Guangxi ECO-engineering Vocational and Technical College,Liuzhou Guangxi 545004,China
  • Received:2018-11-22 Online:2019-10-25 Published:2019-11-28

摘要: 针对背景与前景颜色差别较小的原木图像分割效果不理想的情况,本文给出了模糊C均值聚类与Otsu相结合的图像分割方法。该方法首先以标准原木数据库为样本,之后使用模糊C均值聚类算法把背景与前景颜色差别较小的原木样本图像分割成2类,其次利用准则函数找出前景分割结果,最后把该结果作为Otsu算法的输入,对原木样本图像进行再次分割。实验结果表明,本文研究的算法比单独使用模糊C均值聚类算法、Otsu和同类算法有较好的分割效果和较高的分割准确率,边缘信息保留较好,平均分割准确率提高2个百分点。

关键词: 图像分割, 模糊C均值聚类, Otsu, 准则函数, 分割准确率

Abstract: To solve the problem that the segmentation effect of log image with small difference between background and foreground color is unsatisfactory, an image segmentation method based on fuzzy C-means clustering and Otsu is presented.Firstly, standard log database is used as sample and the log sample image with small difference between background and foreground color is segmented into two categories by using the fuzzy C-means clustering algorithm.Secondly,the criterion function is used to obtain the result of foreground segmentation. Finally,the result is used as input of Otsu algorithm to form the final segmentation of log sample image.The experimental results show that the proposed algorithm is better than the single fuzzy C-means clustering algorithm. Otsu and similar algorithms have better segmentation effect and higher segmentation accuracy, the edge information is well preserved and the average segmentation accuracy is increased by 2 percentage points.

Key words: image segmentation, fuzzy C-mean clustering, Otsu maximum variance, criterion function, accuracy of segmentation

中图分类号: 

  • TP391.41
[1] 王林,白雪冰.基于Gabor变换的木材表面缺陷图像分割方法[J].计算机工程与设计,2010,31(5):1066-1069.DOI: 10.16208/j.issn1000-7024.2010.05.033.
[2] 杨章静,钱建军,黄璞,等.基于Gabor变换的GrabCut纹理图像分割[J].控制与决策,2016,31(1):149-154.DOI: 10.13195/j.kzyjc.2014.1603.
[3] 魏小莉,沈未名.一种基于马尔科夫随机场模型的彩色纹理图像分割[J].武汉大学学报(信息科学版),2010, 35(8):955-958,978.DOI:10.13203/j.whugis2010.08.026.
[4] 白雪冰,张庭亮,祝贺,等.基于Markov随机场的木材表面缺陷图像分割方法[J].林业科技,2013,38(4):33-36. DOI:10.3969/j.issn.1001-9499.2013.04.010.
[5] 宋艳涛,纪则轩,孙权森.基于图像片马尔科夫随机场的脑MR图像分割算法[J].自动化学报,2014,40(8): 1754-1763.
[6] 曹容菲,张美霞,王醒策,等.基于高斯-马尔科夫随机场模型的脑血管分割算法研究[J].电子与信息学报,2014,36(9):2053-2060.
[7] YUAN Jianjun,LI Ping,WEN Yumei.Border segmentation using an improved GGAC model with points distance and gray intensity[C]//2010 International Conference on Multimedia Technology.Piscataway NJ:IEEE Press,2010:1-5.DOI:10.1109/ICMULT.2010.5631446.
[8] 时平,王毅,赵海涛,等.基于数学形态学和Otsu方法的VHP数据心脏图像分割[J].生物医学工程学杂志,2007, 24(5):996-1000.DOI:10.3321/j.issn:1001-5515.2007.05.009.
[9] 戴天虹,吴以.基于OTSU算法与数学形态学的木材缺陷图像分割[J].森林工程,2014,30(2):52-55.DOI: 10.16270/j.cnki.slgc.2014.02.039.
[10]DUNN J C.A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters[J].Journal of Cybernetics,1973,3(3):32-57.DOI:10.1080/01969727308546046.
[11]AHMED M N.YAMANY S M,MOHAMED N,et al.A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data[J].IEEE Transactions on Medical Imaging,2002,21(3):193-199.DOI:10.1109/42.996338.
[12]CAI Weiling,CHEN Songcan,ZHANG Daoqiang,et al.Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation[J].Pattern Recognition,2007,40(3):825-838. DOI:10.1016/j.patcog.2006.07.011.
[13]CAO Hongbao,DENG Hongwen,WANG Yuping,et al.Segementation of M-FISH images for improved classification of chromosomes with an adaptive fuzzy c-means clustering algorithm[J].IEEE Transactions on Fuzzy Systems,2012,20(1):1-8.DOI:10.1109/TFUZZ.2011.2160025.
[14]GUO Fangfang,WANG Xiuxiu,SHEN Jie.Adaptive fuzzy c-means algorithms based on local noise detecting for image segmentation[J].IET Image Processing,2016,10(4):272-279.DOI:10.1049/iet-ipr.2015.0236.
[15]HE Zhiyong,SUN Lining.Surface detect dection method for glass substrate using improved Otsu segmentation[J].Applied Optics,2015,54(33):9823-9830.DOI:10.1364/AO.54.009823.
[16]YUAN Xiaocui,WU Lushen,PENG Qingjin.An improved Otsu method using the weighted object variance for defect detection[J].Applied Surface Science,2015,349:472-484.DOI:10.1016/j.apsusc.2015.05.033.
[17]REN Yan.An image segmentation algorithm based on K-means algorithm and Otsu[J].Boletin Tecnico/technical Bulletin,2017,55(9):78-83.
[18]CHEN Jingjing,ZHAO Dechun,PENG Chenglin,et al.Comparative study on automatic lung parenchyma segementation of CT data using improved OSTU and FCM methods[J].Space Medicine and Medical Engineering, 2014,27(6):448-452.DOI:10.16289/j.cnki.1002-0837.2014.06.015.
[1] 夏海英. 基于改进的SLIC区域合并的宫颈细胞图像分割[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 93-100.
[2] 张新明, 张玉珊, 李振云. 一种改进的矩不变图像分割方法[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 185-190.
[3] 冯嘉礼, 杨润泽. 属性论方法在图像分割中的应用研究[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 191-194.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孟春梅, 陆世银, 梁永红, 莫肖敏, 李卫东, 黄远洁, 成晓静, 苏志恒, 郑华. 岩黄连总碱诱导肝星状细胞凋亡和自噬的电镜实验研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 76 -79 .
[2] 李钰慧, 陈泽柠, 黄中豪, 周岐海. 广西弄岗熊猴的雨季活动时间分配[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 80 -86 .
[3] 覃盈盈, 漆光超, 梁士楚. 凤眼莲组织浸提液对靖西海菜花种子萌发的影响[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 87 -92 .
[4] 韦宏金, 周喜乐, 金冬梅, 严岳鸿. 湖南蕨类植物增补[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 101 -106 .
[5] 包金萍, 郑连斌, 宇克莉, 宋雪, 田金源, 董文静. 大凉山彝族成人皮褶厚度特征[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 107 -112 .
[6] 林永生, 裴建国, 邹胜章, 杜毓超, 卢丽. 清江下游红层岩溶及其水化学特征[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 113 -120 .
[7] 张茹, 张蓓, 任鸿瑞. 山西轩岗矿区耕地流失时空特征及其影响因子研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 121 -132 .
[8] 李贤江, 石淑芹, 蔡为民, 曹玉青. 基于CA-Markov模型的天津滨海新区土地利用变化模拟[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 133 -143 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发