广西师范大学学报(自然科学版) ›› 2019, Vol. 37 ›› Issue (2): 158-167.doi: 10.16088/j.issn.1001-6600.2019.02.020

• • 上一篇    下一篇

岩性与植被类型对喀斯特土壤AM真菌群落的影响

张晓晓1,2,3, 王苗苗2,3, 冯书珍4, 邱虎森2,3, 盖爽爽5, 赵蕾1,2,3, 胡亚军2,3, 何寻阳2,3*, 陆祖军1   

  1. 1.广西师范大学生命科学学院,广西桂林541006;
    2.中国科学院亚热带农业生态研究所亚热带农业生态过程重点实验室, 湖南长沙410125;
    3.中国科学院环江喀斯特生态系统观测研究站,广西环江547100;
    4.广西科技大学医学院,广西柳州545006;
    5.广西科技师范学院经济与管理学院,广西柳州545004
  • 收稿日期:2018-03-01 出版日期:2019-04-25 发布日期:2019-04-28
  • 通讯作者: 何寻阳(1972—),男,湖南平江人,中国科学院亚热带农业生态研究所研究员,博士。E-mail:hbhpjhn@isa.ac.cn
  • 基金资助:
    国家重点研发计划项目(2016YFC0502404);国家973计划课题(2015CB452703)

Effects of Lithology and Vegetation Type on the Soil AM Fungi Community in Karst Region

ZHANG Xiaoxiao1,2,3, WANG Miaomiao2,3, FENG Shuzhen4, QIU Husen2,3, GAI Shuangshuang5, ZHAO Lei1,2,3, HU Yajun2,3, HE Xunyang2,3*, LU Zujun1   

  1. 1.College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China;
    2.Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha Hunan 410125, China;
    3.Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang Guangxi 547100, China;
    4.College of Medicine, Guangxi University of Science and Technology, Liuzhou Guangxi 545006, China;
    5.College of Economic and Management, Guangxi Science and Technology Normal University, Liuzhou Guangxi 545004, China
  • Received:2018-03-01 Online:2019-04-25 Published:2019-04-28

摘要: 运用巢式PCR和高通量测序技术,检测不同岩性和植被类型条件下喀斯特土壤丛枝菌根(arbuscular mycorrhizal,AM)真菌群落结构的变化,揭示不同岩性和植被类型条件下土壤中AM真菌群落结构的影响因子。高通量测序共获得185个操作分类单元(operational taxonomic unit,OTU),这些OTU可划分为7科9属,其中球囊霉属Glomus为研究区内的优势属。单因素方差和独立样本t检验分析表明,在不同岩性和植被类型条件下,土壤理化性质、AM真菌优势属均存在显著性差异。双因素方差分析结果表明,岩性和植被类型及两者的交互作用对AM真菌多样性及群落存在显著性影响。主坐标分析结果显示,在植被恢复阶段不同岩性条件下,AM真菌群落结构存在显著性差异。冗余分析表明,土壤的全磷、全钾、速效磷、砂粒含量、交换性镁离子影响AM真菌群落组成结构。综上可见,岩性和植被改变了土壤的全磷、全钾、速效磷、砂粒含量、交换性镁离子,并因此影响了土壤AM真菌的群落结构。

关键词: 喀斯特, 岩性, 植被类型, 丛枝菌根真菌, 群落结构

Abstract: The changes of arbuscular mycorrhizal (AM) Fungi Community Structure in karst soil under different lithological and vegetation types were detected by nested PCR and high-throughput sequencing, and the influencing factors of AM Fungi Community Structure under different lithological and vegetation types were revealed.A total of 185 OTU (Operational Taxonomic Unit) were obtained from high-throughput sequencing. These OTU could be divided into 7 families and 9 genera, of which the Glomus was the dominant genus in the study area. The results of One-way ANOVA and independent sample t-test analysis showed that there were significant differences in soil physical and chemical properties and AM fungi dominant genus between sample plots under the different lithology and vegetation type conditions. The results of Two-way ANOVA showed that the lithology and vegetation type and the interaction between them had significant influence on the diversity and community of AM fungi. The results of PCoA showed that there were significant differences in the structure of AM fungi community under the different lithology and vegetation type conditions. The results of RDA showed that soil total phosphorus, total potassium, available phosphorus, sand content and exchangeable magnesium ions affected the structure of AM fungal community. In summary, the research results showed that the lithology and vegetation type changed soil total phosphorus, total potassium, available phosphorus, sand content, exchangeable magnesium ions in soil, and thus affected the structure of AM fungi community in soil.

Key words: Karst, lithology, vegetation type, arbuscular mycorrhizal fungi, community structure

中图分类号: 

  • Q938.1
[1] 袁道先. 岩溶石漠化问题的全球视野和我国的治理对策与经验[J]. 草业科学,2008,25(9): 19-25.
[2] 王世杰. 喀斯特石漠化:中国西南最严重的生态地质环境问题[J]. 矿物岩石地球化学通报,2003,22(2):120-126.
[3] 周毅,李旋旗,赵景柱. 中国典型生态脆弱带与贫困相关性分析[J]. 北京理工大学学报,2008,28(3):260-262.
[4] ESKANDARI S, GUPPY C N, KNOX O G G, et al. Mycorrhizal symbioses of cotton grown on sodic soils: a review from an Australian perspective[J]. Pedosphere,2017,27(6):1015-1026.
[5] HEIJDEN M G A V D. Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland[J]. Ecology Letters,2004,7(4):293-303.
[6] COLLA G, ROUPHAEL Y, CARDARELLI M,et al. Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration[J]. Biology and Fertility of Soils,2008,44(3):501-509.
[7] ZHANG L D, ZHANG J L, CHRISTIE P,et al. Effect of inoculation with the arbuscular mycorrhizal fungus Glomus intraradices on the root-knot nematode Meloidogyne incognita incucumber[J]. Journal of Plant Nutrition,2009,32(6):967-979.
[8] LI S. Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure[J]. Ecology,1998,79(6):2082-2091.
[9] OEHL F, LACZKO E, BOGENRIEDER A, et al. Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities[J]. Soil Biology and Biochemistry, 2010,42(5):724-738.
[10] HEIJDEN M G A V D, KLIRONOMOS J N. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity[J]. Nature, 1998,396(6706):69-72.
[11] LIANG Y M, PAN F J, HE X Y, et al. Effect of vegetation types on soil arbuscular mycorrhizal fungi and nitrogen-fixing bacterial communities in a Karst region[J]. Environmental Science and Pollution Research,2016,23(18):18482-18491.
[12] 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社,2000.
[13] WANG Y Q,SHAO M G, GAO L. Spatial variability of soil particle size distribution and fractal features in Water-Wind Erosion Crisscross Region on the Loess Plateau of China[J]. Soil Science,2010,175(12):579-585.
[14] 黄昌勇.土壤学[M]. 北京:中国农业出版社,2001.
[15] LEE J, LEE S, YOUNG J P W. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi[J]. FEMS Microbiology Ecology,2008,65(2):339-349.
[16] SATO K, SUYAMA Y, SAITO M, et al. A new primer for discrimination of arbuscular mycorrhizal fungi with polymerase chain reaction-denature gradient gel electrophoresis[J]. Grassland Science,2005,51(2):179.
[17] 梁月明,苏以荣,何寻阳,等. 岩溶区典型灌丛植物根系丛枝菌根真菌群落结构解析[J]. 环境科学,2018,39(12): 5657-5664.
[18] 刘润进, 焦惠, 李岩,等. 丛枝菌根真菌物种多样性研究进展[J]. 应用生态学报, 2009,20(9):2301-2307.
[19] 梁月明,苏以荣,何寻阳,等. 喀斯特灌丛土壤丛枝菌根真菌群落结构及丰度的影响因子[J]. 环境科学,2017,38(11):4828-4835.
[20] TEDERSOO L, BAHRAM M, TOOTS M, et al. Towards global patterns in the diversity and community structure of ectomycorrhizal fungi[J]. Molecular Ecology,2012,21(17):4160-4170.
[21] 高程,郭良栋. 外生菌根真菌多样性的分布格局与维持机制研究进展[J]. 生物多样性,2013,21(4):488-498.
[22] 王宇涛,辛国荣,李韶山. 丛枝菌根真菌最新分类系统与物种多样性研究概况[J]. 生态学报,2013,33(3):834-843.
[23] GAUR A, ADHOLEYA A. Effects of the particle size of soilless substrates upon AM fungus inoculum production[J]. Mycorrhiza,2000,10(1):43-48.
[24] TRESEDER K K, ALLEN M F. Direct N and P limitation of arbuscular mycorrhizal fungi:a model and field test[J]. New Phytologist,2002,155(3):507-515.
[25] 张旭红,朱永官,王幼珊,等. 不同施肥处理对丛枝菌根真菌生态分布的影响[J]. 生态学报,2006,26(9):3081-3087.
[26] 李伟. 接种丛枝菌根提高柑橘对镁元素吸收及促进光合机制的研究[D]. 重庆:西南大学, 2010.
[27] 贾申,喻理飞. 喀斯特石漠化区石灰岩与白云岩土壤理化性质分析:以贵州兴义市为例[J]. 贵州科学,2010,28(3): 29-33.
[28] ANDERSON D W. The effect of parent material and soil development on nutrient cycling in temperate ecosystems[J]. Biogeochemistry,1998,5(1):71-97.
[29] 朱守谦,何纪星,魏鲁明. 茂兰喀斯特森林小生境特征研究[M].贵阳:贵州科技出版社,2003:38-48.
[30] WALDROP M P, ZAK D R, BLACKWOOD C B, et al. Resource availability controls fungal diversity across a plant diversity gradient[J]. Ecology Letters,2006,9(10):1127-1135.
[1] 林建忠, 李生强, 汪国海, 施泽攀, 刘佳, 王振兴, 周岐海. 公顷网格与公里网格红外相机监测方案比较——以广西弄岗保护区为例[J]. 广西师范大学学报(自然科学版), 2020, 38(3): 92-103.
[2] 周俊妞, 梅军林, 马姜明, 张雅君, 王海苗, 菅瑞. 桂林喀斯特生境红背山麻杆克隆繁殖特征[J]. 广西师范大学学报(自然科学版), 2020, 38(3): 110-116.
[3] 唐创斌, 汪国海, 施泽攀, 李生强, 黄振华, 王振兴, 周岐海. 基于红外相机技术的赤腹松鼠活动节律和时间分配分析[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 133-139.
[4] 刘佳,李生强,汪国海,林建忠,肖治术,周岐海. 喀斯特生境中白鹇的活动节律、时间分配及集群行为[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 156-165.
[5] 张雅君, 马姜明, 苏静, 秦佳双, 莫燕华. 喀斯特石山克隆生长红背山麻杆的生理响应及耐受性评价[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 151-158.
[6] 李钰慧, 陈泽柠, 黄中豪, 周岐海. 广西弄岗熊猴的雨季活动时间分配[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 80-86.
[7] 康福丽,朱国政,林钰,胡振兴,邓荫伟,冯玉能,陈胜华,陈付林,刘灵. AMF对金橘苗根围土壤酶活性及植株生长的影响[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 104-112.
[8] 汪国海, 施泽攀, 李生强, 周岐海. 基于红外相机技术的赤麂活动模式分析[J]. 广西师范大学学报(自然科学版), 2015, 33(3): 117-122.
[9] 胡乐宁, 邓华, 吴华静, 吴道宁, 梁士楚. 筛分强度对桂东北喀斯特典型人工林土壤团聚体的稳定性影响[J]. 广西师范大学学报(自然科学版), 2015, 33(3): 151-156.
[10] 胡乐宁, 苏以荣, 何寻阳. 桂西北喀斯特典型土壤的大团聚体分级特征研究[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 213-219.
[11] 黄佳玉, 谈宇, 廖妤婕, 王维生, 王英辉. 丛枝菌根真菌对桉树吸收Cu和Zn的作用研究[J]. 广西师范大学学报(自然科学版), 2013, 31(2): 118-122.
[12] 吴茜, 黄中豪, 袁培松, 邓凤云, 周岐海. 广西弄岗黑叶猴食物的水分含量对食物选择的影响[J]. 广西师范大学学报(自然科学版), 2011, 29(4): 117-121.
[13] 侯满福, 沈庆庚, 覃海宁. 贵州茂兰喀斯特原生性森林群落物种多样性特征[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 60-65.
[14] 陆祖军, 侯美珍, 梁士楚. 会仙湿地中心区枯水期上覆水磷酸酶活性水平分布[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 76-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发