广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (4): 15-23.doi: 10.16088/j.issn.1001-6600.2024061404

• 智慧交通 • 上一篇    下一篇

基于K-means和Adam-LSTM的机场进场航迹预测研究

黎宗孝1,2, 张健1*, 罗鑫悦1, 赵嶷飞1, 卢飞1   

  1. 1.中国民航大学 空中交通管理学院, 天津 300300;
    2.民航广西空管分局, 广西 南宁 530048
  • 收稿日期:2024-06-14 修回日期:2024-09-28 出版日期:2025-07-05 发布日期:2025-07-14
  • 通讯作者: 张健(1982—),男,河北廊坊人,中国民航大学讲师,博士。E-mail:zhangjian@cauc.edu.cn
  • 基金资助:
    国家自然科学基金(52272356);中国民航大学创新训练项目(202310059166);中央高校基本科研业务费项目(3122022095)

Research on Arrival Trajectory Prediction Based on K-means and Adam-LSTM

LI Zongxiao1,2, ZHANG Jian1*, LUO Xinyue1, ZHAO Yifei1, LU Fei1   

  1. 1. College of Air Traffic Management, Civil Aviation University of China, Tianjin 300300, China;
    2. Civil Aviation Guangxi Air Traffic Sub-bureau, Nanning Guangxi 530048, China
  • Received:2024-06-14 Revised:2024-09-28 Online:2025-07-05 Published:2025-07-14

摘要: 航班机组按照空中交通管制员的指令飞行,是当前空中交通的管理模式。随着航班量增加,为有效提高空中交通运行效率,同时缓解管制员工作负荷,开展基于航迹预测的智慧空管成为新课题。本文针对航班的航迹预测问题提出先分类后预测的航迹预测法。采用某机场进场航班数据,首先应用K-means对航迹进行聚类和分类,接着针对每类进场航迹,构建Adam-LSTM深度学习模型,实现较高质量的航迹预测。研究结果表明,相比传统预测模型,本文方法航迹预测效果具有较大提升,研究成果可为智慧空中交通管理、异常航迹识别等提供技术支撑。

关键词: 空中交通, 工作负荷, 航迹预测, 深度学习

Abstract: It is the current mode of air traffic management that flight crews fly according to the instructions from air traffic controllers. With the increase of the number of flights, in order to effectively improve the efficiency of air traffic operation and reduce the workload of controllers, the development of intelligent air traffic management based on track prediction has become a new topic. Aiming at the research of flight track prediction technology, a two-stage flight track prediction method is put forward innovatively in this paper, which includes classification and then prediction. Firstly, K-means is used to cluster and classify the flight track based on the data of a certain airport. Next, Adam-LSTM deep learning model is constructed for each type of approach track, and high quality track prediction is realized. The results show that, compared with the traditional prediction model, the track prediction effect is greatly improved. The research results can provide technical support for intelligent air traffic management and abnormal track recognition.

Key words: air traffic, working load, track prediction, deep learning

中图分类号:  V355

[1] ICAO. 2016-2030 Global air navigation plan[R]. Montréal: International Civil Aviation Organization, 2016.
[2] 赵嶷飞,王梦琦.空中交通工程学理论内涵与关键科学技术[J].航空学报,2022,43(12): 026537. DOI: 10.7527/S1000-6893.2022.26537.
[3] 张阳,程先峰,刘岩.空中交通基于四维轨迹运行概念及其应用[J].指挥信息系统与技术,2020,11(5): 5-10. DOI: 10.15908/j.cnki.cist.2020.05.002.
[4] ALLIGIER R, GIANAZZA D, DURAND N. Machine learning and mass estimation methods for ground-based aircraft climb prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(6): 3138-3149. DOI: 10.1109/TITS.2015.2437452.
[5] ZENG W L, QUAN Z B, ZHAO Z Y, et al. A deep learning approach for aircraft trajectory prediction in terminal airspace[J]. IEEE Access, 2020, 8: 151250-151266. DOI: 10.1109/ACCESS.2020.3016289.
[6] MA L, TIAN S. A hybrid CNN-LSTM model for aircraft 4D trajectory prediction[J]. IEEE Access, 2020, 8: 134668-134680. DOI: 10.1109/ACCESS.2020.3010963.
[7] ZHANG X G, MAHADEVAN S. Bayesian neural networks for flight trajectory prediction and safety assessment[J]. Decision Support Systems, 2020, 131: 113246. DOI: 10.1016/j.dss.2020.113246.
[8] 张军峰,蒋海行,武晓光,等.基于BADA及航空器意图的四维航迹预测[J].西南交通大学学报,2014,49(3): 553-558. DOI: 10.3969/j.issn.0258-2724.2014.03.028.
[9] 王涛波,黄宝军.基于改进卡尔曼滤波的四维飞行航迹预测模型[J].计算机应用,2014,34(6): 1812-1815. DOI: 10.11772/j.issn.1001-9081.2014.06.1812.
[10] 吕波,王超.改进的扩展卡尔曼滤波在航空器4D航迹预测算法中的应用[J].计算机应用,2021,41(z1): 277-282. DOI: 10.11772/j.issn.1001-9081.2020071144.
[11] 石庆研,王文青,韩萍.基于在线更新LSTM网络的短期4D航迹预测算法[J].信号处理,2021,37(1): 66-74. DOI: 10.16798/j.issn.1003-0530.2021.01.008.
[12] SHAFIENYA H, REGAN A C. 4D flight trajectory prediction using a hybrid Deep Learning prediction method based on ADS-B technology: a case study of Hartsfield-Jackson Atlanta International Airport (ATL)[J]. Transportation Research Part C: Emerging Technologies, 2022, 144: 103878. DOI: 10.1016/j.trc.2022.103878.
[13] ZENG W L, CHU X, XU Z F, et al. Aircraft 4D trajectory prediction in civil aviation: a review[J]. Aerospace, 2022, 9(2): 91. DOI: 10.3390/aerospace9020091.
[14] VANWELSENAERE A, ELLERBROEK J, HOEKSTRA J, et al. Analysis on the impact of pop-up flight occurrence when extending the arrival management horizon[C]//Proceedings of the 12th USA/Europe Air Traffic Management Research and Development Seminar. Red Hook, NY: Curran Associates, Inc., 2017: 151-160.
[15] DESHMUKH R, SUN D W, HWANG I. Data-driven precursor detection algorithm for terminal airspace operations[C]//Proceedings of the 13th USA/Europe Air Traffic Management Research and Development Seminar. Red Hook, NY: Curran Associates, Inc., 2019: 282-288.
[16] OLIVE X, BASORA L. Identifying anomalies in past en-route trajectories with clustering and anomaly detection methods[C]//Proceedings of the Thirteenth USA/Europe Air Traffic Management Research and Development Seminar. Red Hook, NY: Curran Associates, Inc., 2019: 272-281.
[17] DAI L, LIU Y L, HANSEN M. Sequential prediction of go-around occurrence[EB/OL]. (2022-01-27)[2024-06-01]. https://dx.doi.org/10.2139/ssrn.4019517. DOI: 10.2139/ssrn.4019517.
[18] 张健,罗鑫悦,黎宗孝,等.基于动态贝叶斯网络的无人机航迹模型研究[J].中国安全生产科学技术,2023,19(11): 188-193. DOI: 10.11731/j.issn.1673-193x.2023.11.026.
[19] 赵元棣,李科频,朱文心.航空器爬升与下降阶段4D航迹预测[J].科学技术与工程,2023,23(17): 7582-7588. DOI: 10.3969/j.issn.1671-1815.2023.17.050.
[20] WU Y, YU H Y, DU J P, et al. An aircraft trajectory prediction method based on trajectory clustering and a spatiotemporal feature network[J]. Electronics, 2022, 11(21): 3453. DOI: 10.3390/electronics11213453.
[21] 陈玉立,佟强,谌彤童,等.基于注意力机制和生成对抗网络的飞行器短期航迹预测模型[J].计算机应用,2022,42(10): 3292-3299. DOI: 10.11772/j.issn.1001-9081.2021081387.
[22] HUANG J, DING W J. Aircraft trajectory prediction based on Bayesian optimised temporal convolutional network-bidirectional gated recurrent unit hybrid neural network[J]. International Journal of Aerospace Engineering, 2022, 2022(1): 2086904. DOI: 10.1155/2022/2086904.
[23] 韩萍,张启,石庆研,等.基于DBSCAN-GRU算法的终端区4D航迹预测[J].信号处理,2023,39(3): 439-449. DOI: 10.16798/j.issn.1003-0530.2023.03.007.
[24] ZHOU J L, ZHANG H H, LYU W Y, et al. Hybrid 4-dimensional Trajectory prediction model, based on the reconstruction of prediction time span for aircraft en Route[J]. Sustainability, 2022, 14(7): 3862. DOI: 10.3390/su14073862.
[25] JIA P Y, CHEN H P, ZHANG L, et al. Attention-LSTM based prediction model for aircraft 4-D trajectory[J]. Scientific Reports, 2022, 12(1): 15533. DOI: 10.1038/s41598-022-19794-1.
[26] 石庆研,张泽中,韩萍.基于时空特征融合的Encoder-Decoder多步4D短期航迹预测[J].信号处理,2023,39(11): 2037-2048. DOI: 10.16798/j.issn.1003-0530.2023.11.013.
[27] 卢婷婷,刘博,李纯柱.基于注意力Seq2Seq模型的终端区航空器航迹预测[J].科学技术与工程,2024,24(9): 3882-3895. DOI: 10.12404/j.issn.1671-1815.2304239.
[28] 王堃,周志崇,曲凯,等.基于注意力机制的CNN-LSTM模型的航迹预测[J].空军工程大学学报,2023,24(6): 50-57. DOI: 10.3969/j.issn.2097-1915.2023.06.007.
[29] CHOI H C, DENG C H, HWANG I. Hybrid machine learning and estimation-based flight trajectory prediction in terminal airspace[J]. IEEE Access, 2021, 9: 151186-151197. DOI: 10.1109/ACCESS.2021.3126117.
[30] LE T H, TRAN N P, PHAM D T, et al. Short-term trajectory prediction using generative machine learning methods[C]//9th International Conference on Research in Air Transportation (ICRAT 2020). Barcelona: ICRAT, 2020: 1-7.
[1] 石天怡, 南新元, 郭翔羽, 赵濮, 蔡鑫. 基于改进ConvNeXt的苹果叶片病害分类算法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 83-96.
[2] 苏春海, 夏海英. 抗噪声双约束网络的面部表情识别[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 70-82.
[3] 李欣, 宁静. 基于时空特征融合的电力系统暂态稳定评估[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 89-100.
[4] 侯海燕, 谭玉枚, 宋树祥, 夏海英. 头部姿态鲁棒的面部表情识别[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 126-137.
[5] 卢家辉, 陈庆锋, 王文广, 余谦, 何乃旭, 韩宗钊. 基于多尺度注意力的器官图像分割方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 138-148.
[6] 杜帅文, 靳婷. 基于用户行为特征的深度混合推荐算法[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 91-100.
[7] 易见兵, 彭鑫, 曹锋, 李俊, 谢唯嘉. 多尺度特征融合的点云配准算法研究[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 108-120.
[8] 肖宇庭, 吕晓琪, 谷宇, 刘传强. 基于拆分残差网络的糖尿病视网膜病变分类[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 91-101.
[9] 高飞, 郭晓斌, 袁冬芳, 曹富军. 改进PINNs方法求解边界层对流占优扩散方程[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 33-50.
[10] 蒋懿波, 刘会家, 吴田. 基于改进残差网络的输电线路雷击过电压识别研究[J]. 广西师范大学学报(自然科学版), 2023, 41(4): 74-83.
[11] 杨烁祯, 张珑, 王建华, 张恒远. 声音事件检测综述[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 1-18.
[12] 王鲁娜, 杜洪波, 朱立军. 基于流形正则的堆叠胶囊自编码器优化算法[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 76-85.
[13] 张萍, 徐巧枝. 基于多感受野与分组混合注意力机制的肺结节分割研究[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 76-87.
[14] 李永杰, 周桂红, 刘博. 基于YOLOv3模型的人脸检测与头部姿态估计融合算法[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 95-103.
[15] 吴军, 欧阳艾嘉, 张琳. 基于多头注意力机制的磷酸化位点预测模型[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 161-171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 何安康, 陈艳平, 扈应, 黄瑞章, 秦永彬. 融合边界交互信息的命名实体识别方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 1 -11 .
[2] 卢展跃, 陈艳平, 杨卫哲, 黄瑞章, 秦永彬. 基于掩码注意力与多特征卷积网络的关系抽取方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 12 -22 .
[3] 齐丹丹, 王长征, 郭少茹, 闫智超, 胡志伟, 苏雪峰, 马博翔, 李时钊, 李茹. 基于主题多视图表示的零样本实体检索方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 23 -34 .
[4] 黄川洋, 程灿儿, 李松威, 陈鸿东, 张秋楠, 张钊, 邵来鹏, 唐剑, 王咏梅, 郭奎奎, 陆航林, 胡君辉. 带涂覆层的长周期光纤光栅温度传感特性研究[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 35 -42 .
[5] 田晟, 熊辰崟, 龙安洋. 基于改进PointNet++的城市道路点云分类方法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 1 -14 .
[6] 宋铭楷, 朱成杰. 基于H-WOA-GWO和区段修正策略的配电网故障定位研究[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 24 -37 .
[7] 陈禹, 陈磊, 张怡, 张志瑞. 基于QMD-LDBO-BiGRU的风速预测模型[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 38 -57 .
[8] 韩烁, 江林峰, 杨建斌. 基于注意力机制PINNs方法求解圣维南方程[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 58 -68 .
[9] 李志欣, 匡文兰. 结合互注意力空间自适应和特征对集成判别的细粒度图像分类[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 69 -82 .
[10] 石天怡, 南新元, 郭翔羽, 赵濮, 蔡鑫. 基于改进ConvNeXt的苹果叶片病害分类算法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 83 -96 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发