广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (3): 159-169.doi: 10.16088/j.issn.1001-6600.2023062001

• 研究论文 • 上一篇    下一篇

逐步Ⅰ型混合截尾下复合Rayleigh分布竞争失效产品部分步加寿命试验的统计分析

朱艳, 蔡静*, 龙芳   

  1. 贵州民族大学 数据科学与信息工程学院, 贵州 贵阳 550025
  • 收稿日期:2023-06-20 修回日期:2023-07-25 发布日期:2024-05-31
  • 通讯作者: 蔡静(1980—), 女, 山东淮坊人, 贵州民族大学教授, 博士。E-mail: 114528176@qq.com
  • 基金资助:
    国家自然科学基金(11901134); 贵州省科技厅基金项目(黔科基础-ZK〔2024〕一般509)

Statistical Analysis of Partially Step Stress Accelerated Life Tests for Compound Rayleigh Distribution Competing Failure Model Under Progressive Type-Ι Hybrid Censoring

ZHU Yan, CAI Jing*, LONG Fang   

  1. School of Data Science and Information Engineering, Guizhou Minzu University, Guiyang Guizhou 550025, China
  • Received:2023-06-20 Revised:2023-07-25 Published:2024-05-31

摘要: 本文在逐步Ⅰ型混合截尾下,研究复合Rayleigh分布竞争失效产品部分步加寿命试验的统计分析问题。首先,基于复合Rayleigh分布竞争失效产品和损伤失效率(TFR)模型,运用极大似然理论和渐近似然理论,给出未知参数和加速因子的极大似然估计和渐近置信区间;然后,对未知参数和加速因子选取先验,利用MH抽样算法获得参数和加速因子的Bayes估计和最大后验密度置信区间(HPD);最后,通过Monte Carlo模拟对2种估计方法进行比较。结果表明:贝叶斯估计效果整体优于极大似然估计(MLE),在相同置信水平下,基于Bayes估计的HPD置信区间长度略短于MLE的渐近置信区间长度。

关键词: 竞争失效, 部分步加寿命试验, 复合Rayleigh分布, 极大似然估计, 贝叶斯估计

Abstract: Under Type I hybrid censoring, the statistical analysis of step stress partially accelerated life tests for compound Rayleigh distribution competing failure products is studied.Based on the compound Rayleigh distribution competing failure products and tampered failure rate (TFR) model, the maximum likelihood estimation and asymptotic confidence interval of unknown parameters and acceleration factors are given by using the maximum likelihood theory and asymptotic approximation theory.The prior information of the unknown parameters and acceleration factors is selected, and the Bayesian estimation and the highest posterior probability density confidence interval (HPD) of the unknown parameters and acceleration factors are obtained by using the MH sampling algorithm. Finally, the two estimation methods are compared by Monte Carlo simulation. The results indicate that Bayesian estimation overall outperforms maximum likelihood estimation (MLE). At the same confidence level, the length of HPD based on Bayes estimation is superior to that of the asymptotic confidence interval based on MLE.

Key words: competing failure, step stress partially accelerated life tests, compound Rayleigh distribution, maximum likelihood estimation, Bayesian estimation

中图分类号:  O213.2

[1] 鄢伟安, 杨海军, 周俊杰. 基于自适应逐步Ⅱ型混合截尾试验Burr-Ⅻ分布的统计分析[J].系统工程理论与实践, 2020, 40(5): 1339-1349.
[2] 林慧中, 王亮. 考虑交互效应的双应力恒加试验可靠性推断[J]. 昆明理工大学学报(自然科学版), 2023, 48(1): 180-192.
[3] NASSAR M, ELSHAHHAT A. Statistical analysis of inverse Weibull constant-stress partially accelerated life tests with adaptive progressively type I censored data[J]. Mathematics, 2023, 11(2): 370.
[4] 师义民, 师小琳. 竞争失效产品部分加速寿命试验的统计分析[J]. 西北工业大学学报, 2017, 35(1): 109-115.
[5] AKGUL F G, YU K, SENOGLU B. Classical and Bayesian inferences in step-stress partially accelerated life tests for inverse Weibull distribution under type-I censoring[J]. Strength of Materials, 2020, 52(3): 480-496.
[6] EL-SAGHEER R M, MAHMOUD M A W, NAGATY H. Inferences for Weibull-exponential distribution based on progressive type-II censoring under step-stress partially accelerated life test model[J]. Journal of Statistical Theory and Practice, 2018, 13(1): 14.
[7] MOHAMEDM A W, EL-SAGHEER R M., ABOU SENNA A M. Estimating the modified Weibull parameters in presence of step-stress partially accelerated life testing[J]. Journal of Statistics Applications & Probability, 2018, 7(1): 137-150.
[8] ALJOHANIH M, ALFAR N M. Estimations with step-stress partially accelerated life tests for competing risks Burr XII lifetime model under type-II censored data[J]. Alexandria Engineering Journal, 2020, 59(3): 1171-1180.
[9] REN J R, GUI W H. Inference and optimal censoring scheme for progressively type-II censored competing risks model for generalized Rayleigh distribution[J]. Computational Statistics, 2021, 36: 479-513.
[10] ZHANG C F, SHI Y M, WU M. Bayesian inference on type-I progressively hybrid competing risks model[J]. Chinese Quarterly Journal of Mathematics, 2018, 33(2): 122-131.
[11] WU M, SHI Y M, SUN Y D. Inference for accelerated competing failure models from Weibull distribution under type-I progressive hybrid censoring[J]. Journal of Computational and Applied Mathematics, 2014, 263: 423-431.
[12] ABU-ZINADAH H H, SAYED-AHMED N. Competing risks model with partially step-stress accelerate life tests in analyses lifetime Chen data under type-II censoring scheme[J]. Open Physics, 2019, 17(1): 192-199.
[13] 王琪, 兰海英. 复合Rayleigh分布模型尺度参数的Bayes估计[J]. 科学技术与工程, 2012, 12(30): 7980-7982.
[14] ABUSHAL T A. Estimation of the unknown parameters for the compound Rayleigh distribution based on progressive first-failure-censored sampling[J]. Open Journal of Statistics, 2011, 1(3): 161-171.
[15] 邵媛媛, 周菊玲, 董翠玲. 双边定时截尾样本下复合瑞利分布的参数估计[J].淮阴师范学院学报(自然科学版), 2019, 18(2): 95-100.
[16] BAROT D R, PATEL M N. Posterior analysis of the compound Rayleigh distribution under balanced loss functions for censored data[J]. Communications in Statistics-Theory and Methods, 2017, 46(3): 1317-1336.
[17] 王琪, 兰海英, 徐刚. 复合瑞利分布模型参数的Bayes可靠性分析[J]. 江西师范大学学报(自然科学版), 2013, 37(1): 20-22.
[18] GHITANY M E. A compound Rayleigh survival model and its application to randomly censored data[J]. Statistical Papers, 2001, 42(4): 437-450.
[19] BEKKER A, ROUX J J J, MOSTEIT P J. A generalization of the compound Rayleigh distribution: using a Bayesian method on cancer survival times[J]. Communications in Statistics-Theory and Methods, 2000, 29(7): 1419-1433.
[20] BHATTACHARYYA G K, SOEJOETI Z. A tampered failure rate model for step-stress accelerated life test[J]. Communications in Statistics-Theory and Methods, 1989, 18(5): 1627-1643.
[21] EL-SAGHEER R M, AHSANULLAH M. Bayesianestimation based on progressively type-II censored samples from compound Rayleigh distribution[J]. Journal of Statistical Theory and Applications, 2015, 14(2):107-122.
[22] GEWEKE J, TANIZAKI H. Bayesian estimation of state-space models using the Metropolis-Hastings algorithm within Gibbs sampling[J]. Computational Statistics and Data Analysis, 2001, 37(2): 151-170.
[1] 龙芳, 蔡静, 朱艳. 逐步Ⅱ型混合截尾下Lomax分布多部件应力强度模型的可靠性分析[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 120-130.
[2] 陈钟秀, 张兴发, 熊强, 宋泽芳. 非对称DAR模型的估计与检验[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 68-81.
[3] 孙烨, 蒋京京, 王纯杰. 广义极值回归模型下现状数据的贝叶斯估计[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 82-90.
[4] 梁鑫, 陈小玲, 张兴发, 李元. 一类带有GARCH类误差项的自回归滑动平均模型[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 195-205.
[5] 李莉丽, 张兴发, 李元, 邓春亮. 基于高频数据的日频GARCH模型估计[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 68-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发