广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (3): 141-150.doi: 10.16088/j.issn.1001-6600.2023060701

• 研究论文 • 上一篇    下一篇

具有Beddington-DeAngelis型功能性反应的随机时滞捕食-被捕食系统

黄开娇1,2, 肖飞雁1*   

  1. 1.广西师范大学 数学与统计学院, 广西 桂林 541006;
    2.广西民族大学 数学与物理学院, 广西 南宁 530006
  • 收稿日期:2023-06-07 修回日期:2023-08-11 发布日期:2024-05-31
  • 通讯作者: 肖飞雁(1973—), 女(土家族), 湖南张家界人, 广西师范大学教授, 博士。 E-mail: fyxiao@gxnu.edu.cn
  • 基金资助:
    广西自然科学基金(2022JJA110062, 2023GXNSFBA026009); 广西民族大学引进人才科研启动项目(2022KJQD06)

A Stochastic Predator-prey Model with Beddington-DeAngelis Functional Response and Time Delay

HUANG Kaijiao1,2, XIAO Feiyan1*   

  1. 1. School of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541006, China;
    2. School of Mathematics and Physics, Guangxi Minzu University, Nanning Guangxi 530006, China
  • Received:2023-06-07 Revised:2023-08-11 Published:2024-05-31

摘要: 本文研究一类具有Beddington-DeAngelis型功能性反应的随机时滞捕食-被捕食系统。利用Lyapunov函数、It公式等证明该系统存在唯一全局正解和随机最终有界性,得到全局渐近稳定性的充分条件。利用Milstein方法进行数值模拟,验证系统的全局渐近稳定性。

关键词: 捕食-被捕食系统, Beddington-DeAngelis型功能性反应, 随机最终有界性, 全局渐近稳定性

Abstract: In this paper, a stochastic delayed predator-prey model with Beddington-DeAngelis functional response is studied. Sufficient criteria for global existence, stochastically ultimately bounded and global asymptotic stability of the positive equilibrium are obtained. Numerical simulations are carried out to illustrate the analytical results.

Key words: predator-prey model, Beddington-DeAngelis functional response, stochastically ultimately bounded, global asymptotic stability

中图分类号:  O175

[1] VOLTERRA V. Fluctuations in the abundance of a species considered mathematically[J]. Nature, 1926, 118(2972): 558-560.
[2] BEDDINGTON J R. Mutual interference between parasites or predators and its effect on searching efficiency[J]. Journal of Animal Ecology, 1975, 44(1): 331-340.
[3] DEANGELIS D L, GOLDSTEIN R A, O'NEILL R V. A model for tropic interaction[J]. Ecology, 1975, 56(4): 881-892.
[4] 陈滨,王明新. 带有扩散和Beddington-DeAngelis响应函数的捕食模型的正平衡态[J]. 数学年刊A辑, 2007,28A(4): 495-506.
[5] 李波, 梁子维. 一类具有Beddington-DeAngelis响应函数的阶段结构捕食模型的稳定性[J]. 数学物理学报, 2022, 42(6): 1826-1835.
[6] 段明霞,马纪英.具有Beddington-DeAngelis型功能反应的离散捕食者-食饵系统的动力学行为[J]. 应用数学进展, 2023, 12(4): 1824-1837.
[7] LIU M, WANG K. Global stability of a nonlinear stochastic predator-prey system with Beddington-DeAngelis functional response[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(16): 1114-1121.
[8] 黄开娇, 肖飞雁. 具有Beddington-DeAngelis型功能性反应的随机捕食-被捕食系统[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 32-40.
[9] SHAO Y, KONG W. A predator-prey model with Beddington-DeAngelis functional response and multiple delays in deterministic and stochastic environments[J]. Mathematics. 2022, 10(18): 3378.
[10] PENG M, LIN R, CHEN Y, et al. Qualitative analysis in a Beddington-DeAngelis type predator-prey model with two time delays[J]. Symmetry, 2022, 14(12): 2535.
[11] XU S H, LÜ W D, LI X F. Existence of global solutions for a prey-predator model with Beddington-DeAngelis functional response and cross-diffusion[J]. Mathematica Applicata, 2009, 22(4): 821-827.
[12] LIU S Q, ZHANG J H. Coexistence and stability of predator-prey model with Beddington-DeAngelis functional response and stage structure[J]. Journal of Mathematical Analysis and Applications, 2008, 342(1): 446-460.
[13] MAO X R. Stability of stochastic differential equations with Markovian switching[J]. Stochastic Processes and Their Applications, 1999, 79(1): 45-67.
[14] MAO X R. Stochastic differential equations and their applications[M]. Chichester: Ellis Horwood, 1997.
[15] HIGHAM D J. An algorithmic introduction to numerical simulation of stochastic differential equations[J]. SIAM Review, 2001, 43(3): 525-546.
[1] 郑涛, 周欣然, 张龙. 三种群捕食-竞争-合作混杂模型的全局渐近稳定性[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 64-70.
[2] 苗新艳, 张龙, 罗颜涛, 潘丽君. 一类交替变化的竞争—合作混杂种群模型研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 25-31.
[3] 黄开娇, 肖飞雁. 具有Beddington-DeAngelis型功能性反应的随机捕食—被捕食系统[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 32-40.
[4] 邢伟, 高晋芳, 颜七笙, 周其华. 具有非线性传染率及脉冲免疫接种的SIQR传染病模型[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 58-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发