|
广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (3): 141-150.doi: 10.16088/j.issn.1001-6600.2023060701
黄开娇1,2, 肖飞雁1*
HUANG Kaijiao1,2, XIAO Feiyan1*
摘要: 本文研究一类具有Beddington-DeAngelis型功能性反应的随机时滞捕食-被捕食系统。利用Lyapunov函数、It公式等证明该系统存在唯一全局正解和随机最终有界性,得到全局渐近稳定性的充分条件。利用Milstein方法进行数值模拟,验证系统的全局渐近稳定性。
中图分类号: O175
[1] VOLTERRA V. Fluctuations in the abundance of a species considered mathematically[J]. Nature, 1926, 118(2972): 558-560. [2] BEDDINGTON J R. Mutual interference between parasites or predators and its effect on searching efficiency[J]. Journal of Animal Ecology, 1975, 44(1): 331-340. [3] DEANGELIS D L, GOLDSTEIN R A, O'NEILL R V. A model for tropic interaction[J]. Ecology, 1975, 56(4): 881-892. [4] 陈滨,王明新. 带有扩散和Beddington-DeAngelis响应函数的捕食模型的正平衡态[J]. 数学年刊A辑, 2007,28A(4): 495-506. [5] 李波, 梁子维. 一类具有Beddington-DeAngelis响应函数的阶段结构捕食模型的稳定性[J]. 数学物理学报, 2022, 42(6): 1826-1835. [6] 段明霞,马纪英.具有Beddington-DeAngelis型功能反应的离散捕食者-食饵系统的动力学行为[J]. 应用数学进展, 2023, 12(4): 1824-1837. [7] LIU M, WANG K. Global stability of a nonlinear stochastic predator-prey system with Beddington-DeAngelis functional response[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(16): 1114-1121. [8] 黄开娇, 肖飞雁. 具有Beddington-DeAngelis型功能性反应的随机捕食-被捕食系统[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 32-40. [9] SHAO Y, KONG W. A predator-prey model with Beddington-DeAngelis functional response and multiple delays in deterministic and stochastic environments[J]. Mathematics. 2022, 10(18): 3378. [10] PENG M, LIN R, CHEN Y, et al. Qualitative analysis in a Beddington-DeAngelis type predator-prey model with two time delays[J]. Symmetry, 2022, 14(12): 2535. [11] XU S H, LÜ W D, LI X F. Existence of global solutions for a prey-predator model with Beddington-DeAngelis functional response and cross-diffusion[J]. Mathematica Applicata, 2009, 22(4): 821-827. [12] LIU S Q, ZHANG J H. Coexistence and stability of predator-prey model with Beddington-DeAngelis functional response and stage structure[J]. Journal of Mathematical Analysis and Applications, 2008, 342(1): 446-460. [13] MAO X R. Stability of stochastic differential equations with Markovian switching[J]. Stochastic Processes and Their Applications, 1999, 79(1): 45-67. [14] MAO X R. Stochastic differential equations and their applications[M]. Chichester: Ellis Horwood, 1997. [15] HIGHAM D J. An algorithmic introduction to numerical simulation of stochastic differential equations[J]. SIAM Review, 2001, 43(3): 525-546. |
[1] | 郑涛, 周欣然, 张龙. 三种群捕食-竞争-合作混杂模型的全局渐近稳定性[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 64-70. |
[2] | 苗新艳, 张龙, 罗颜涛, 潘丽君. 一类交替变化的竞争—合作混杂种群模型研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 25-31. |
[3] | 黄开娇, 肖飞雁. 具有Beddington-DeAngelis型功能性反应的随机捕食—被捕食系统[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 32-40. |
[4] | 邢伟, 高晋芳, 颜七笙, 周其华. 具有非线性传染率及脉冲免疫接种的SIQR传染病模型[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 58-65. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |