广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (3): 131-140.doi: 10.16088/j.issn.1001-6600.2023082902

• 研究论文 • 上一篇    下一篇

基于改进帝王蝶算法的最大似然DOA估计

赵小梅, 丁勇*, 王海涛   

  1. 桂林电子科技大学 信息与通信学院, 广西 桂林 541004
  • 收稿日期:2023-08-29 修回日期:2023-10-16 发布日期:2024-05-31
  • 通讯作者: 丁勇(1977—), 男, 湖南祁阳人, 桂林电子科技大学讲师, 博士。E-mail: ding_yong@guet.edu.cn
  • 基金资助:
    广西创新驱动发展专项(桂科AA21077008); 广西人才与基地专项(桂科AD20297038); 广西高校中青年教师科研基础能力提升项目(2021KY0197)

Maximum Likelihood DOA Estimation Based on Improved Monarch Butterfly Algorithm

ZHAO Xiaomei, DING Yong*, WANG Haitao   

  1. School of Information and Communication, Guilin University of Electronic Technology, Guilin Guangxi 541004, China
  • Received:2023-08-29 Revised:2023-10-16 Published:2024-05-31

摘要: 针对传统最大似然波达方向(maximum likelihood direction of arrival,ML-DOA)估计存在计算量大、估计精度差等问题,本文提出一种采用改进帝王蝶优化算法(improved monarch butterfly optimization algorithm,IMBO)的ML-DOA估计方法。IMBO算法通过精英反向学习策略对初始帝王蝶种群进行优化,得到适应度值较优的初始帝王蝶个体,进而能够改善帝王蝶种群的多样性;引入差分进化算法启发的变异操作以及自适应策略对帝王蝶个体的寻优方式进行改进,扩大了算法的搜索空间;引入了高斯-柯西变异算子,自适应调整变异步长,避免算法陷入局部最优。将IMBO应用于ML-DOA,实验表明,与传统的DOA估计算法相比,在不同信源数目、信噪比以及种群数量下,本文提出的算法收敛性能更好,均方根误差更低,运算量更小。

关键词: 波达方向, 最大似然估计, 帝王蝶算法, 精英反向学习, 自适应策略, 变异算子

Abstract: In response to the problems of excessive computational complexity and poor accuracy in traditional maximum likelihood direction of arrival (ML-DOA) estimation, improved monarch butterfly optimization algorithm is proposed and applied to ML-DOA estimation. By using elite reverse learning strategies to optimize the initial monarch butterfly population and obtaining individuals with better fitness values, the diversity of the monarch butterfly population can be improved; In order to improve the individual optimization method, the mutation operation and adaptive strategy inspired by differential evolution are used for expanding the search scope of the algorithm; At the same time, the Gaussian-Cauchy mutation operator is introduced to adjust the mutation step size, preventing the algorithm from trapping in local optima, and apply IMBO to ML-DOA. Experiments show that the proposed algorithm has better convergence performance, lower root-mean-square deviation and less computation under different number of sources, SNR and population, compared with the conventional DOA estimation algorithm.

Key words: direction of arrival, maximum likelihood estimation, butterfly optimization algorithm, elite reverse learning, adaptive strategy, mutation operator

中图分类号:  TN911.7

[1] RUAN N J, WANG H, WEN F Q, et al. DOA estimation in B5G/6G: trends and challenges[J]. Sensors, 2022, 22(14): 5125-5125. DOI: 10.3390/s22145125.
[2] 张小飞, 汪飞, 陈伟华. 阵列信号处理的理论与应用[M]. 2版. 北京: 国防工业出版社, 2013: 1-7.
[3] 王永良, 陈辉, 彭应宁, 等. 空间谱估计理论与算法[M]. 北京: 清华大学出版社, 2004: 1-20.
[4] STOICA P, SHARMAN K C. Maximum likelihood methods for direction-of-arrival estimation[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(7): 1132-1143. DOI: 10.1109/29.57542.
[5] 恽小华, 王莉, 恽才华, 等. 基于最大似然算法的空间谱估计测向性能分析[J]. 电子学报, 1996,24(12): 70-72.
[6] WONG K T, ZOLTOWSKI M D. Root-MUSIC-based azimuth-elevation angle-of-arrival estimation with uniformly spaced but arbitrarily oriented velocity hydrophones[J]. IEEE Transactions on Signal Processing, 1999, 47(12): 3250-3260. DOI: 10.1109/78.806070.
[7] ROY R, KAILATH T. ESPRIT: estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984-995. DOI: 10.1109/29.32276.
[8] FAN X N, PANG L B, SHI P F, et al. Application of bee evolutionary genetic algorithm to maximum likelihood direction-of-arrival estimation[J]. Mathematical Problems in Engineering, 2019, 2019: 6035870. DOI: 10.1155/2019/6035870.
[9] LI M, LU Y. Genetic algorithm based maximum likelihood DOA estimation[C]// RADAR 2002. London: IEE, 2002: 502-506. DOI: 10.1109/RADAR.2002.1174766.
[10] BOCCATO L, KRUMMENAUER R, ATTUX R, et al. Application of natural computing algorithms to maximum likelihood estimation of direction of arrival[J]. Signal Processing, 2012, 92(5): 1338-1352. DOI: 10.1016/j.sigpro.2011.12.004.
[11] 冯舒, 张志成, 石要武. 引入蝙蝠算法的最大似然DOA估计[J]. 现代电子技术, 2016, 39(8): 26-29. DOI: 10.16652/j.issn.1004-373x.2016.08.007.
[12] SHARMA A, MATHUR S. Comparative analysis of ML-PSO DOA estimation with conventional techniques in varied multipath channel environment[J]. Wireless Personal Communications, 2018, 100(3): 803-817. DOI: 10.1007/s11277-018-5350-0.
[13] 李俊武, 俞志富. 改进粒子群算法在DOA估计中的应用[J]. 计算机工程与应用, 2013, 49(9): 203-206. DOI: 10.3778/j.issn.1002-8331.1110-0002.
[14] 王鹏, 何伟嘉, 贺雪芳, 等. 基于SOA的矢量水听器阵列极大似然DOA估计[J]. 数学的实践与认识, 2022, 52(2): 110-116.
[15] ZHAO W G, WANG L Y, ZHANG Z X. Atom search optimization and its application to solve a hydrogeologic parameter estimation problem[J]. Knowledge-Based Systems, 2019, 163: 283-304. DOI: 10.1016/j.knosys.2018.08.030.
[16] WANG P, HE W J, GUO F, et al. An improved atomic search algorithm for optimization and application in ML DOA estimation of vector hydrophone array[J]. AIMS Mathematics, 2022, 7(4): 5563-5593. DOI: 10.3934/math.2022308.
[17] 王鹏, 贺雪芳, 张明星, 等. 基于人工鱼群算法的声矢量传感器阵列的最大似然DOA估计[J]. 太原理工大学学报, 2020, 51(6): 845-851. DOI: 10.16355/j.cnki.issn1007-9432tyut.2020.06.010.
[18] 张义元, 张志成, 石要武, 等. 基于布谷鸟搜索算法的最大似然DOA估计[J]. 吉林大学学报(信息科学版), 2015, 33(3): 235-240. DOI: 10.3969/j.issn.1671-5896.2015.03.003.
[19] WANG G G, DEB S, CUI Z H. Monarch butterfly optimization[J]. Neural Computing & Applications, 2019, 31(7): 1995-2014. DOI: 10.1007/s00521-015-1923-y.
[20] TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]// International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06). Los Alamitos, CA: IEEE Computer Society, 2005: 695-701. DOI: 10.1109/CIMCA.2005.1631345.
[21] 孟宪猛, 蔡翠翠. 基于精英反向学习和Lévy飞行的鲸鱼优化算法[J]. 电子测量技术, 2021, 44(20): 82-87. DOI: 10.19651/j.cnki.emt.2107650.
[22] 孙林, 赵婧, 徐久成, 等. 基于改进帝王蝶优化算法的特征选择方法[J]. 模式识别与人工智能, 2020, 33(11): 981-994. DOI: 10.16451/j.cnki.issn1003-6059.202011003.
[23] 孙成硕, 戚志东, 叶伟琴, 等. 变异反向学习的自适应帝王蝶优化算法[J]. 计算机工程与应用, 2022, 58(11): 66-72. DOI: 10.3778/j.issn.1002-8331.2107-0042.
[24] 周慧, 王进, 顾翔, 等. 高斯-柯西变异算子优化的LSSVM模型研究[J]. 计算机与数字工程, 2020, 48(1): 19-24. DOI: 10.3969/j.issn.1672-9722.2020.01.004.
[25] 杜晓昕, 张剑飞, 郭媛, 等. 基于柯西-高斯动态消减变异的果蝇优化算法研究[J]. 计算机工程与科学, 2016, 38(6): 1171-1176. DOI: 10.3969/j.issn.1007-130X.2016.06.016.
[1] 逯苗, 何登旭, 曲良东. 非线性参数的精英学习灰狼优化算法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 55-67.
[2] 杨晓伟, 张军舰. 负二项回归模型的重对数律和强相合性[J]. 广西师范大学学报(自然科学版), 2020, 38(3): 59-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发