|
广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (2): 94-104.doi: 10.16088/j.issn.1001-6600.2023041602
王卫舵1,2, 王以松1,2*, 杨磊1,2
WANG Weiduo1,2, WANG Yisong1,2*, YANG Lei1,2
摘要: 针对求解难度为NP完全的基础设施即服务(IaaS)模式云资源调度问题,本文提出一种基于回答集程序(ASP)的描述性优化求解方法,并对其正确性进行分析。首先,把满足虚拟机CPU使用的情况下关闭尽可能多的主机做为减少云平台能耗的方法,将云资源调度问题形式化表述;其次,结合形式化描述以及减少云平台能耗的策略,将云资源调度问题用ASP编码为描述性(优化)问题,并分析其正确性;最后,在公开的PlanetLab数据集上进行实验,结果显示,ASP方法可在保障服务质量的同时减少集群能耗,最高可节能13%以上。这表明ASP方法在云资源调度问题上是有效的,从而提供一种易理解、易修改并能充分利用ASP最新工具成果的有效云资源调度新方法。
中图分类号: TP393.09
[1] CANIOU Y, CARON E, CHANG A K W,et al. Budget-aware scheduling algorithms for scientific workflows with stochastic task weights on infrastructure as a service cloud platforms[J]. Concurrency and Computation: Practice and Experience, 2021, 33(17): 1-21. DOI: 10.1002/cpe.6065. [2] VELPULA P, PAMULA R. CEECP: CT-based enhanced e-clinical pathways in terms of processing time to enable big data analytics in healthcare along with cloud computing[J]. Computers & Industrial Engineering, 2022, 168: 108037. DOI: 10.1016/j.cie.2022.108037. [3] 师亮, 温亮明, 雷声, 等. 基于决策树和由均匀分布改进Q学习的虚拟机整合算法[J]. 计算机科学, 2023, 50(6): 36-44. DOI: 10.11896/jsjkx.220300192. [4] BELOGLAZOV A, BUYYA R. Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers[J]. Concurrency and Computation: Practice and Experience, 2012, 24(13): 1397-1420. DOI: 10.1002/cpe.1867. [5] 刘开南. 云数据中心基于贪心算法的虚拟机迁移策略[J]. 计算机应用, 2019, 39(11): 3333-3338. DOI: 10.11772/j.issn.1001-9081.2019040598. [6] CHENG S, CAO C, YU P, et al. SLA-Aware andgreen resource management of IaaS clouds[C]// HPCC-SmartCity-DSS 2016. Los Alamitos, CA: IEEE Computer Society, 2016: 457-464. DOI: 10.1109/HPCC- SmartCity-DSS.2016.0072. [7] 李双刚, 张爽, 王兴伟. 基于自适应虚拟机迁移的云资源调度机制[J]. 计算机科学, 2020, 47(9): 238-245. DOI: 10.11896/jsjkx.190900189. [8] 杨翎, 姜春茂. 基于三支决策的虚拟机节能迁移策略[J]. 计算机应用, 2021, 41(4): 990-998. DOI: 10.11772/j.issn.1001-9081.2020081294. [9] RANA N, LATIFF M S A, ABDULHAMID S M, et al. A hybrid whale optimization algorithm with differential evolution optimization for multi-objective virtual machine scheduling in cloud computing[J]. Engineering Optimization, 2022, 54(12): 1999-2016. DOI: 10.1080/0305215X.2021.1969560. [10] KHELIFA A, HAMROUNI T, MOKADEM R,et al. Combining task scheduling and data replication for SLA compliance and enhancement of provider profit in clouds[J]. Applied Intelligence, 2022, 51(10): 7494-7516. DOI: 10.1007/s10489-021-02267-9. [11] 徐珩僭, 王以松, 冯仁艳. 一种用于Slater与Kemeny选举求解的ASP方法[J]. 计算机工程, 2019, 45(9): 198-203. DOI: 10.19678/j.issn.1000-3428.0052139. [12] 杨东, 王以松. 析取回答集程序设计结构化测试方法[J]. 计算机应用, 2023, 43(1): 215-220. DOI: 10.11772/j.issn.1001-9081.2021111891. [13] MOCHI M. Planning and scheduling in digital health with answer set programming[J]. Electronic Proceedings in Theoretical Computer Science, 2022, 364: 228-235. DOI: 10.4204/EPTCS.364.38. [14] DODARO C, GALATÀ G, KHAN M K,et al. Operating room (re)scheduling with bed management via ASP[J]. Theory and Practice of Logic Programming, 2022, 22(2): 229-253. DOI: 10.1017/S1471068421000090. [15] ABELS D, JORDI J, OSTROWSKI M, et al. Train scheduling with hybrid answer set programming[J]. Theory and Practice of Logic Programming, 2021, 21(3): 317-347. DOI: 10.1017/S1471068420000046. [16] ALI R, EL-KHOLANY M M S, GEBSER M. Flexible job-shop scheduling for semiconductor manufacturing with hybrid answer set programming[C]// Practical Aspects of Declarative Languages: LNCS Volume 13880. Cham: Springer Nature Switzerland AG, 2023: 85-95. DOI: 10.1007/978-3-031-24841-2_6. [17] BELADY C L. In the data center, power and cooling costs more than the IT equipment it supports[J]. Electronics cooling, 2007, 13(1): 24. [18] BUYYA R, BELOGLAZOV A, ABAWAJY J H. Energy-efficient management of data center resources for cloud computing: a vision, architectural elements, and open challenges[EB/OL].(2010-06-02)[2023-04-16]. https://arxiv.org/abs/1006.0308. DOI: 10.48550/arXiv.1006.0308. [19] 朱喆. 回答集编程在RoboCup中型组的应用[J]. 信息通信, 2014(10): 104-105. DOI: 10.3969/j.issn.1673-1131.2014.10.062. [20] GELFOND M, LIFSCHITZ V. The stable model semantics for logic programming[C]// Proceedings of International Logic Programming Conference and Symposium. Cambridge, MA: MIT Press, 1988: 1070-1080. [21] 王淑庆. 基于ASP逻辑的偏好多语境系统[J]. 湖北大学学报(哲学社会科学版), 2014, 41(5): 44-49. DOI: 10.13793/j.cnki.42-1020/c.2014.05.010. [22] HAVUR G, CABANILLAS C, POLLERES A. Benchmarking answer set programming systems for resource allocation in business processes[J]. Expert Systems with Applications, 2022, 205: 117599. DOI: 10.1016/j.eswa.2022.117599. [23] 谢小天, 赵岭忠. 基于逻辑程序的调机路径规划研究[J]. 计算机工程, 2018, 44(1): 98-103. DOI: 10.3969/j.issn. 1000-3428.2018.01.016. [24] GUPTA A, NAMASUDRA S. A novel technique for accelerating live migration in cloud computing[J]. Automated Software Engineering, 2022, 29(1): 34. DOI: 10.1007/s10515-022-00332-2. [25] HABAEBI M H, MERRAD Y, ISLAM M R, et al. Extending CloudSim to simulate sensor networks[J]. Simulation, 2023, 99(1): 3-22. DOI: 10.1177/00375497221105530. [26] 宋建松, 连玮, 陕粉丽, 等. IaaS云融合Q学习的自适应虚拟机部署[J]. 计算机工程与设计, 2021, 42(7): 1851-1858. DOI: 10.16208/j.issn1000-7024.2021.07.008. [27] 许鹏飞. 基于SLO的服务质量监控系统的设计与实现[D]. 武汉: 华中科技大学, 2022. DOI: 10.27157/d.cnki.ghzku.2022.000154. [28] 刘帅帅, 姜春茂. 能耗感知下云资源三支粒度调度策略研究[J]. 计算机应用研究, 2023, 40(3): 810-815. DOI: 10.19734/j.issn.1001-3695.2022.07.0365. |
[1] | 郑力宁, 金雪松, 云利军. 基于粒子群优化算法的云数据均衡放置策略[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 202-209. |
[2] | 黄恒杰. 传感器中基于连通支配集的区域覆盖控制算法[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 19-25. |
[3] | 岳才杰, 陈元琰, 朱新华. 一种有效的传感器网络区域查询算法[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 52-58. |
[4] | 吴礻韦娴, 苏诚, 陈明, 冯国富, 池涛. 基于Agent的温室无线传感网络分簇管理模型[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 210-214. |
[5] | 陈冬连, 罗晓曙, 陈宏滨, 廖志贤, 王文延. 一种多媒体传感器网络的分布式压缩传输算法[J]. 广西师范大学学报(自然科学版), 2010, 28(4): 25-29. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |