|
广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (2): 41-54.doi: 10.16088/j.issn.1001-6600.2023042707
杨海1, 谢亚琴2*
YANG Hai1, XIE Yaqin2*
摘要: 由于5G集中在人群密集区域配置,需要的基站数量多且能耗大,因此,运营商需要支付的购电成本很多。为了降低运营商的购电成本,本文提出一种基于Floyd算法的5G基站区域储能分配策略。首先,将供电网络中的5G基站区域储电站等效为一系列节点,并根据节点之间的距离信息计算出传输损失率矩阵;其次,对各节点的储能情况进行分析,并根据其储能情况将节点分为供能节点与需求节点;最后,基于Floyd算法来合理调配该储能网络中的能量。仿真结果表明,在不引入外部供电和引入外部供电两种情况下,本文所提出的系统在运行2 a或150 d后分别达到稳定状态,系统不再需要额外从公用电网购电,减轻了电网供电压力的同时,降低了运营商的购电成本。
中图分类号: TM91; TN929.5; TK02
[1] 余潇潇,宋福龙,周原冰,等.“新基建”对中国“十四五”电力需求和电网规划的影响分析[J].中国电力,2021,54(7):11-17. DOI:10.11930/j.issn.1004-9649.202010049. [2] 杜忠明,王雪松.“十三五”中国电力需求水平预测[J].中国电力,2017,50(9):11-17. DOI:10.11930/j.issn.1004-9649.201706123. [3] 孙健,张文胜,王承祥.5G高频段信道测量与建模进展[J].电子学报,2017,45(5):1249-1260. DOI:10.3969/j.issn.0372-2112.2017.05.031. [4] 庞立华,张阳,任光亮,等.5G无线通信系统信道建模的现状和挑战[J].电波科学学报,2017,32(5):487-497. DOI:10.13443/j.cjors.2017091502. [5] GUO J L, CUI L, LIU Y, et al. A compact ultra-wideband crossed-dipole antenna for 2G/3G/4G/IMT/5G customer premise equipment applications[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(2): 339-345. DOI: 10.1631/FITEE.2000456. [6] 宋盼,谢亚楠,潘登科,等.一种应用于4G通信的小型多频手机天线[J].上海大学学报(自然科学版),2017,23(4):535-542. DOI:10.12066/j.issn.1007-2861.1676. [7] 梁春,李祥锋.青岛市5G通信基站空间布局规划探讨[J].规划师,2021,37(7):51-55. DOI:10.3969/j.issn.1006-0022.2021.07.007. [8] 谭萌,彭艺,马戎,等.5G对中国碳排放峰值的影响研究[J].中国环境科学,2021,41(3):1447-1454. DOI:10.3969/j.issn.1000-6923.2021.03.049. [9] 刘友波,王晴,曾琦,等.能源互联网背景下5G网络能耗管控关键技术及展望[J].电力系统自动化,2021,45(12):174-183. DOI:10.7500/AEPS20200828016. [10] 王艳茹,尹喜阳,欧清海,等.基于能量共享与交易协同的5G融合配电网基站储能调控方法[J].中国电力,2023,56(6):61-70. DOI:10.11930/j.issn.1004-9649.202207038. [11] 付继垚,张泉,孟凡希,等.5G机柜式热管空调一体机过渡季动态性能实测[J].科学技术与工程,2022,22(22):9616-9622. DOI:10.3969/j.issn.1671-1815.2022.22.021. [12] 周国华,薛宁,毕强.光伏发电系统的改进型快速GMPPT算法[J/OL].西南交通大学学报:1-10[2023-05-26].http://kns.cnki.net/kcms/detail/51.1277.U.20230317.1120.002.html. [13] 刘婵媛,张楠,匡宇来,等.基于共享铁塔的5G天线对微气象在线监测设备的电磁干扰[J].电网与清洁能源,2022,38(12):24-32. DOI:10.3969/j.issn.1674-3814.2022.12.004. [14] 龚坚刚,曹枚根,刘欣博,等.高压输电线路共享资源分析及共享铁塔供电技术方案探讨[J].浙江电力,2020,39(4):1-9. DOI:10.19585/j.zjdl.202004001. [15] WANG B W, SUN Y J, LI S, et al. Hierarchical matching with peer effect for latency-aware caching in social IoT[C]//2018 IEEE International Conference on Smart Internet of Things (SmartIoT). Piscataway, NJ: IEEE, 2018: 255-262. DOI: 10.1109/SmartIoT.2018.00053. [16] LIAO H J, ZHOU Z Y, ZHAO X W, et al. Learning-based context-aware resource allocation for edge-computing-empowered industrial IoT[J]. IEEE Internet of Things Journal, 2020, 7(5): 4260-4277. DOI: 10.1109/JIOT.2019.2963371. [17] 马雅静.“互联网+”背景下的共享经济发展策略探究[J].全国流通经济,2023(4):121-124. DOI:10.3969/j.issn.1009-5292.2023.04.030. [18] 尹喜阳,吕国远,王忠钰,等.面向5G融合配电网的基站能量共享方法[J/OL].现代电力:1-8[2023-05-26].https://doi.org/10.19725/j.cnki.1007-2322.2022.0242. DOI:10.19725/j.cnki.1007-2322.2022.0242. [19] 张明明.基于5G网络的通信基站建设与维护概述[J].数字技术与应用,2023,41(1):104-106. DOI:10.19695/j.cnki.cn12-1369.2023.01.32. [20] 孙毅,李飞,胡亚杰,等.计及条件风险价值和综合需求响应的产消者能量共享激励策略[J].电工技术学报,2023,38(9):2448-2463. DOI:10.19595/j.cnki.1000-6753.tces.220090. [21] 张翔,王曌,周振宇,等.考虑光伏集成5G基站用能模式的多主体共享储能优化配置[J].电测与仪表,2023,60(3):97-106. DOI:10.19753/j.issn1001-1390.2023.03.015. [22] 曾博,穆宏伟,董厚琦,等.考虑5G基站低碳赋能的主动配电网优化运行[J].上海交通大学学报,2022,56(3):279-292. DOI:10.16183/j.cnki.jsjtu.2021.367. [23] 蒋廷耀,谢龙恩,杜雨,等.基于深度强化学习的5G基站储能调度策略[J].电力系统自动化,2023,47(9):147-157. DOI:10.7500/AEPS20220526003. [24] 张朝辉,李靖,韩璐珩.基于数据-地理位置联合驱动的5G微基站最优分配策略[J].计算机学报,2022,45(5):1087-1099. DOI:10.11897/SP.J.1016.2022.01087. [25] 左秀峰,沈万杰.基于Floyd算法的多重最短路问题的改进算法[J].计算机科学,2017,44(5):232-234,267. DOI:10.11896/j.issn.1002-137X.2017.05.041. [26] 郭彦文,郭志成.基于人工蜂群算法的5G基站选址规划[J].科技传播,2023,15(6):129-132. DOI:10.16607/j.cnki.1674-6708.2023.06.030. [27] 曾海燕,郑鑫.基于5G移动通信基站选址方法的探究[J].智能计算机与应用,2020,10(5):231-232,237. DOI:10.3969/j.issn.2095-2163.2020.05.056. |
[1] | 赵迪, 文中, 吴倩, 闫文文, 覃治银, 王博宇. 5G基站与光热电站电-热耦合下的综合能源系统低碳优化调度[J]. 广西师范大学学报(自然科学版), 2023, 41(4): 47-60. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |