广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (2): 30-40.doi: 10.16088/j.issn.1001-6600.2023051402

• • 上一篇    下一篇

基于动态生成对抗网络的路网缺失交通数据修复

许伦辉1,2*, 李金龙2, 李若南3, 陈俊宇2   

  1. 1.广东科技学院 计算机学院, 广东 东莞 523083;
    2.华南理工大学 土木与交通学院, 广东 广州 510641;
    3.哈尔滨工业大学(深圳) 计算机科学与技术学院, 广东 深圳 518055
  • 收稿日期:2023-05-14 修回日期:2023-06-21 发布日期:2024-04-22
  • 通讯作者: 许伦辉(1965—), 男, 江西南康人, 华南理工大学教授, 博导。 E-mail: lhxu@scut.edu.cn
  • 基金资助:
    国家自然科学基金(52072130); 广东省普通高校重点领域专项(2021ZDZX1077); 广东省重点建设学科科研能力提升项目(2021ZDJS116)

Missing Traffic Data Recovery for Road Network Based on Dynamic Generative Adversarial Network

XU Lunhui1,2*, LI Jinlong2, LI Ruonan3, CHEN Junyu2   

  1. 1. School of Computer Science, Guangdong University of Science and Technology, Dongguan Guangdong 523083, China;
    2. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou Guangdong 510641, China;
    3. College of Computer Science and Technology, Harbin Institute of Technology(Shenzhen) Shenzhen Guangdong 518055, China
  • Received:2023-05-14 Revised:2023-06-21 Published:2024-04-22

摘要: 针对智能交通系统数据采集过程中发生的数据缺失问题,本文提出一种基于动态生成对抗网络(dynamic generative adversarial network, D-GAN)的路网交通数据修复方法。该方法首先依据交通数据的时空特性与设定的缺失类型和缺失比例来构造各种缺失交通数据矩阵,然后基于博弈思想迭代训练由2个全连接神经网络构成的生成对抗网络。引入一种新颖的动态自适应机制,研究能在模型计算过程中自动识别生成器与判别器的最佳迭代次数,最终生成完整的交通数据矩阵并修复缺失值。采用加州PeMS和广州交通速度数据集来完成D-GAN模型的构建,并使用多种评价指标评估D-GAN的修复性能。实验结果表明:相对于非随机缺失模式,D-GAN对随机缺失模式的修复精度更高;随着缺失率增加,D-GAN的修复精度加速下降。但在各种缺失条件下,D-GAN模型的修复性能要优于现有模型(例如BGCP、prophet-RF和GAIN)。

关键词: 智能交通系统, 交通数据修复, 生成对抗网络, 博弈思想, 动态自适应机制

Abstract: For the issue of missing data occurring in the data collection process of intelligent transportation systems, a road network traffic data recovery model is proposed in this paper based on the dynamic generative adversarial network. Firstly, the approach in this paper are constructed various missing traffic data matrices by considering the spatial-temporal properties of traffic data and the set missing patterns and missing rates. Then iteratively trains a GAN was composed of two fully connected neural networks based on a game idea. By introducing a novel dynamic adaptive mechanism, this study can automatically identify the optimal number of iterations of the generator and discriminator during the model computation, and finally generates the complete traffic data matrix and repair the missing values. California PeMS and Guangzhou traffic speed datasets are used to complete the D-GAN model construction, and multiple evaluation metrics are employed to assess the repair performance of D-GAN. Experimental results show that the repair accuracy of D-GAN is higher for random missing patterns compared with non-random missing patterns; and the repair accuracy of D-GAN degrades accelerated with increasing missing rates. However, the repair performance of D-GAN outperforms the baseline models (e.g., BGCP, prophet-RF, and GAIN) under various missing conditions.

Key words: intelligent transportation systems, traffic data recovery, generative adversarial network, game idea, dynamic adaptive mechanism

中图分类号:  U495

[1] LI H P, LI M, LIN X, et al. A spatiotemporal approach for traffic data imputation with complicated missing patterns[J]. Transportation Research Part C: Emerging Technologies, 2020, 119: 102730. DOI:10.1016/j.trc.2020.102730.
[2] LI J L, WU P, GUO H C, et al. Multivariate transfer passenger flow forecasting with data imputation by joint deep learning and matrix factorization[J]. Applied Sciences, 2023, 13(9): 5625. DOI:10.3390/app13095625.
[3] LI Y B, LI Z H, LI L. Missing traffic data: comparison of imputation methods[J]. IET Intelligent Transport Systems, 2014, 8(1): 51-57. DOI:10.1049/iet-its.2013.0052.
[4] LI J L, WU P, LI R N, et al. ST-CRMF: compensated residual matrix factorization with spatial-temporal regularization for graph-based time series forecasting[J]. Sensors, 2022, 22(15): 5877. DOI:10.3390/s22155877.
[5] MA X L, LUAN S, DING C, et al. Spatial interpolation of missing annual average daily traffic data using copula-based model[J]. IEEE Intelligent Transportation Systems Magazine, 2019, 11(3): 158-170. DOI:10.1109/MITS.2019.2919504.
[6] HAN T Y, WADA K, OGUCHI T. Large-scale traffic data imputation using matrix completion on graphs[C]// 2019 IEEE Intelligent Transportation Systems Conference (ITSC). Piscataway, NJ: IEEE, 2019: 2252-2258. DOI:10.1109/ITSC.2019.8917365.
[7] LI J L, XU L H, LI R N, et al. Deep spatial-temporal bi-directional residual optimisation based on tensor decomposition for traffic data imputation on urban road network[J]. Applied Intelligence, 2022, 52(10): 11363-11381. DOI:10.1007/s10489-021-03060-4.
[8] REN P, CHEN X Y, SUN L J, et al. Incremental Bayesian matrix/tensor learning for structural monitoring data imputation and response forecasting[J]. Mechanical Systems and Signal Processing, 2021, 158: 107734. DOI:10.1016/j.ymssp.2021.107734.
[9] 陆文琦,周天,谷远利,等.基于张量分解理论的车道级交通流数据修复算法[J].吉林大学学报(工学版),2021,51(5): 1708-1715.DOI:10.13229/j.cnki.jdxbgxb20200535.
[10] 武江南,张红梅,赵永梅,等.基于张量奇异值理论的交通数据重构方法[J].计算机应用研究,2022,39(5): 1449-1453,1459.DOI:10.19734/j.issn.1001-3695.2021.10.0429.
[11] CHEN X Y, LEI M Y, SAUNIER N, et al. Low-rank autoregressive tensor completion for spatiotemporal traffic data imputation[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 12301-12310. DOI:10.1109/TITS.2021.3113608.
[12] RAN B, TAN H C, WU Y K, et al. Tensor based missing traffic data completion with spatial-temporal correlation[J].Physica A: Statistical Mechanics and Its Applications, 2016, 446: 54-63. DOI:10.1016/j.physa.2015.09.105.
[13] ROLL J. Daily traffic count imputation for bicycle and pedestrian traffic: comparing existing methods with machine learning approaches[J]. Transportation Research Record, 2021, 2675(11): 1428-1440. DOI:10.1177/03611981211027161.
[14] ZHANG Y, LIU Y C. Data imputation using least squares support vector machines in urban arterial streets[J]. IEEE Signal Processing Letters, 2009, 16(5): 414-417. DOI:10.1109/LSP.2009.2016451.
[15] 裴莉莉,孙朝云,韩雨希,等.基于SSC与XGBoost的高速公路异常收费数据修复算法[J].吉林大学学报(工学版),2022,52(10): 2325-2332.DOI:10.13229/j.cnki.jdxbgxb20210231.
[16] TANG J J, CHEN X Q, HU Z, et al. Traffic flow prediction based on combination of support vector machine and data denoising schemes[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 534: 120642. DOI:10.1016/j.physa.2019.03.007.
[17] 李振亮,李波.基于矩阵分解的卷积神经网络改进方法[J].计算机应用,2023,43(3): 685-691.DOI:10.11772/j.issn.1001-9081.2022010032.
[18] YANG J M, PENG Z R, LIN L. Real-time spatiotemporal prediction and imputation of traffic status based on LSTM and Graph Laplacian regularized matrix factorization[J]. Transportation Research Part C: Emerging Technologies, 2021, 129: 103228. DOI:10.1016/j.trc.2021.103228.
[19] 钱斌,郑楷洪,陈子鹏,等.基于残差连接长短期记忆网络的时间序列修复模型[J].计算机应用,2021,41(1): 243-248.DOI:10.11772/j.issn.1001-9081.2020060928.
[20] ZHANG Z C, LIN X, LI M, et al. A customized deep learning approach to integrate network-scale online traffic data imputation and prediction[J]. Transportation Research Part C: Emerging Technologies, 2021, 132: 103372. DOI:10.1016/j.trc.2021.103372.
[21] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. DOI:10.1145/3422622.
[22] 徐东伟,彭航,商学天,等.基于图自编码-生成对抗网络的路网数据修复[J].交通运输系统工程与信息,2021,21(6): 33-41.DOI:10.16097/j.cnki.1009-6744.2021.06.005.
[23] ZHANG S C. Nearest neighbor selection for iterativelykNN imputation[J]. Journal of Systems and Software, 2012, 85(11): 2541-2552. DOI:10.1016/j.jss.2012.05.073.
[24] CHAUDHRY A, LI W, BASRI A, et al. A method for improving imputation and prediction accuracy of highly seasonal univariate data with large periods of missingness[J]. Wireless Communications and Mobile Computing, 2019,2019: 4039758. DOI:10.1155/2019/4039758.
[25] CHEN X Y, HE Z C, SUN L J. A Bayesian tensor decomposition approach for spatiotemporal traffic data imputation[J]. Transportation Research Part C: Emerging Technologies, 2019, 98: 73-84. DOI:10.1016/j.trc.2018.11.003.
[26] YOON J, JORDON J, SCHAAR M. GAIN: missing data imputation using generative adversarial nets[J]. Proceedings of Machine Learning Research, 2018, 80: 5689-5698.
[27] LI J L, SUN L J, LI R N, et al. Application ofsiSVR-Vis/NIR to the nondestructive determination of acid detergent fiber content in corn straw[J]. Optik, 2020, 202: 163717. DOI:10.1016/j.ijleo.2019.163717.
[28] LI R N, QIN Y, WANG J B, et al. AMGB: trajectory prediction using attention-based mechanism GCN-BiLSTM in IOV[J]. Pattern Recognition Letters, 2023, 169: 17-27. DOI:10.1016/j.patrec.2023.03.006.
[1] 蔡丽坤, 吴运兵, 陈甘霖, 刘翀凌, 廖祥文. 基于生成对抗网络的类别文本生成[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 79-90.
[2] 彭新建,翁小雄. 基于萤火虫算法优化BP神经网络的公交行程时间预测[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 28-36.
[3] 邝先验, 朱磊, 吴赟, 徐晨. 基于Adaboost算法和颜色特征的公交车辆视频检测[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 9-18.
[4] 许伦辉, 游黄阳. 基于特性和影响因素分析的短时交通流预测[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 袁静静, 郑宇钊, 徐晨枫, 殷婷婕. 非内吞依赖型生物大分子药物胞质递送策略研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 1 -8 .
[2] 涂广升, 孔咏骏, 宋哲超, 叶康. 密文域可逆信息隐藏研究进展及技术难点分析[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 1 -15 .
[3] 杨杨阳, 朱震霆, 杨翠萍, 李世豪, 张舒, 范秀磊, 万蕾. 基于文献计量学分析的剩余污泥厌氧消化预处理研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 16 -29 .
[4] 杨海, 谢亚琴. 基于Floyd算法的5G基站区域储能分配策略[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 41 -54 .
[5] 闫文文, 文中, 王爽, 李国祥, 王博宇, 吴艺. 基于AA-CAES电站和综合需求响应的供暖期弃风消纳策略[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 55 -68 .
[6] 甘友春, 王灿, 贺旭辉, 张羽, 张雪菲, 王帆, 喻亚洲. 考虑光热电站和柔性负荷的电氢热综合能源系统联合优化运行[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 69 -83 .
[7] 王旭阳, 王常瑞, 张金峰, 邢梦怡. 基于跨模态交叉注意力网络的多模态情感分析方法[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 84 -93 .
[8] 王卫舵, 王以松, 杨磊. 云资源调度的回答集程序描述性求解[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 94 -104 .
[9] 余谦, 陈庆锋, 何乃旭, 韩宗钊, 卢家辉. 基于矩阵运算加速的改进社区发现遗传算法[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 105 -119 .
[10] 龙芳, 蔡静, 朱艳. 逐步Ⅱ型混合截尾下Lomax分布多部件应力强度模型的可靠性分析[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 120 -130 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发