|
广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (6): 247-256.doi: 10.16088/j.issn.1001-6600.2021080902
• 研究论文 • 上一篇
张春梅1,2*, 闫芳2,3, 宋海2, 张喜峰1,2, 陈叶1,2
ZHANG Chunmei1,2*, YAN Fang2,3, SONG Hai2, ZHANG Xifeng1,2 , CHEN Ye1,2
摘要: 在《本草纲目》中黄参被誉为“小人参”,以黄参叶片为试材,采用高通量测序平台BGISEQ-500进行转录组测序,利用转录组分析软件进行组装、注释。结果表明:1)利用组装软件,获得99 981个Unigene,总长度是113 850 816 bp,平均长度是1 138 bp,N50的长度是1 874 bp,GC含量是39.93%。2)将Unigene比对到7大功能数据库进行注释,分别有49 390(NT:49.40%)、48 281(SwissProt:48.29%)、61 116(KOG:61.13%)以及55 859(Pfam:55.87%)个Unigene获得功能注释。3)比对到NR数据库共有66 451条,黄参与胡萝卜Daucus carota subsp. sativus有较高同源性,与其他物种的同源性较低。4)基因本体(gene ontology, GO)数据库注释显示,有78 040条Unigene得到注释,按功能分为生物过程、细胞组分、分子功能三大类,分别有15、11、14个亚类,其中执行生物过程的类区较多。5)51 479条Unigene富集在KEGG数据库的20条代谢通路中。6)在KOG数据库中,有61 116条Unigene被分配到26个基因功能大类中,参与功能预测、信号转导、翻译、修饰及蛋白质运输的基因最多。7)使用Transdecoder检测出62 323个CDS,检测出17 308个SSR(simple sequence repeats)分布于13 256个Unigene中,双核苷酸重复基元类型最为丰富(6 721,占38.83%);预测出2 370个编码转录因子的Unigene。黄参遗传信息丰富,本文研究结果将为揭示黄参遗传背景、分子标记研究、开展其功能基因组分析等提供基础数据,也为黄参的综合利用及研发奠定基础。
中图分类号:
[1] 薛鸿燕. 山丹黄参化学成分及生物活性研究[D].兰州: 兰州理工大学, 2011. [2] 贾恢先, 邹卿, 叶相清, 等. 山丹黄参的分布及微量元素含量研究[J].西北植物学报, 2001, 21(1): 188-190. DOI: 1000-4025-(2001)01-0188-03. [3] 高春燕. 黄参籽精油、多酚的组成及其功能性研究[D].西安: 陕西师范大学, 2012. [4] 王瑞娴, 李川. 全长转录组测序技术在非模式植物转录组学研究中的应用[J].分子植物育种, 2019, 17(2): 502-508. DOI: 10.13271/j.mpb.017.000502. [5] LI S F, FAN C M, LI Y, et al. Effects of drought and salt-stresses on gene expression in Caragana korshinskii seedlings revealed by RNA-seq[J]. BMC Genomics, 2016, 17: 200. DOI: 10.1186/s12864-016-2562-0. [6] CHEN W, YAO Q M, PATIL G B, et al. Identification and comparative analysis of differential gene expression in soybean leaf tissue under drought and floodingstress revealed by RNA-Seq[J]. Frontiers in Plant Science, 2016, 7: 1044. DOI: 10.3389/fpls.2016.01044. [7] 崔凯, 吴伟伟, 刁其玉. 转录组测序技术的研究和应用进展[J].生物技术通报, 2019, 35(7): 1-9. DOI: 10.13560/j.cnki.biotech.bull.1985.2019-0374. [8] FRANSSEN S U, SHRESTHA R P, BRUTIGAM A, et al. Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing[J]. BMC Genomics, 2011, 12: 227. DOI: 10.1186/1471-2164-12-227. [9] METZKER M L. Sequencing technologies-the next generation[J]. Nature Reviews Genetics, 2010, 11(1): 31-46. DOI: 10.1038/nrg2626. [10] LOPEZ-MAESTRE H, BRINZA L, MARCHET C, et al. SNP calling from RNA-seq data without a reference genome: identification, quantification, differential analysis and impact on the protein sequenc[J].Nucleic Acids Research, 2016, 44(19): e148. DOI: 10.1093/nar/gkw655. [11] GRABHERR M G, HAAS B J, YASSOUR M, et al.Full-length transcriptome assembly from RNA-seq data without a reference genome[J].Nature Biotechnology, 2011, 29(7): 644-652. DOI: 10.1038/nbt.1883. [12] 王光炯, 柳新红, 许大明, 等. 百山祖冷杉叶片转录组分析[J].江西农业大学学报, 2021, 43(2): 343-354. DOI: 10.13836/j.jjau.2021039. [13] 慧芳, 刘秀岩, 李宗谕, 等. 转录组测序技术在药用植物研究中的应用[J].中草药, 2019, 50(24): 6149-6155. DOI: 10.7501/j.issn.0253-2670.2019.24.033. [14] WHEAT C W.Rapidly developing functional genomics in ecological model systems via 454 transcriptome sequencing[J].Genetica, 2010, 138(4): 433-451. DOI: 10.1007/s10709-008-9326-y. [15] 王继华, 黎俊荣, 蔡时可, 等. 肇实转录组测序及生物信息学分析[J].中药材, 2019, 42(11): 2513-2518. DOI: 10.13863/j.issn1001-4454.2019.11.008. [16] 李聪, 郭天麒, 梁小红, 等. 植物ERFs类转录因子在逆境胁迫中的作用[J].生物技术通报, 2011(4): 1-6. DOI: 10.13560/j.cnki.biotech.bull.1985.2011.04.021. [17] 贾昌路, 张瑶, 朱玲, 等. 转录组测序技术在生物测序中的应用研究进展[J].分子植物育种, 2015, 13(10): 2388-2394. DOI: 10.13271/j.mpb.013.002388. [18] 王传琦, 孔稳稳, 李晶. 植物转录因子最新研究方法[J].生物技术通讯, 2013, 24(1): 118-123. DOI: 10.3969/j.issn.1009-0002.2013.01.028. [19] 钟婵娟, 彭伟业, 王冰, 等. 植物逆境响应相关的C2H2型锌指蛋白研究进展[J].植物生理学报, 2020, 56(11): 2356-2366. DOI: 10.13592/j.cnki.ppj.2020.0171. [20] 张桐, 李智强, 伍国强. WRKY转录因子在植物逆境响应中的作用[J].生物技术通报, 2021, 37(10): 203-215. DOI: 10.13560/j.cnki.biotech.bull.1985.2020-1481. [21] 王华, 汪王微, 王冬良, 等. 杜鹃花叶片转录组测序数据组装及功能注释[J].浙江农业学报, 2018, 30(7): 1149-1159. DOI: 10.3969/j.issn.1004-1524.2018.07.07. [22] 申玉晓. 玫瑰MYB转录因子调控类黄酮介导的逆境响应机制研究[D].武汉: 华中农业大学, 2019. DOI: 10.27158/d.cnki.ghznu.2019.000816. [23] 刘静, 王翠平, 朱强, 等. 黑果枸杞bHLH转录因子家族的生物信息学分析[J].分子植物育种, 2020, 18(14): 4612-4623. DOI: 10.13271/j.mpb.018.004612. [24] 郭仰东, 张磊, 李双桃, 等. 蔬菜作物应答非生物逆境胁迫的分子生物学研究进展[J].中国农业科学, 2018, 51(6): 1167-1181. DOI: 10.3864/j.issn.0578-1752.2018.06.015. [25] JIN C, HUANG X S, LI K Q, et al. Overexpression of a bHLH1 transcriptionfactor of Pyrus ussuriensis confers enhanced cold tolerance and increases expression of stress-responsive genes[J]. Frontiersin Plant Science, 2016, 7: 441. DOI: 10.3389/fpls.2016.00441. |
[1] | 张丽萌, 李闰婷, 聂晓宁, 李玉华, 李林, 李亚蒙, 陈龙欣, 王林青. 生长抑素Ⅱ型受体SSTR2蛋白的理化性质及生物信息学分析[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 164-173. |
[2] | 梁嘉瑜, 梁语, 马姜明. 林-药种植模式研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 366-375. |
[3] | 吴军, 欧阳艾嘉, 张琳. 基于多头注意力机制的磷酸化位点预测模型[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 161-171. |
[4] | 罗洪林, 冯鹏霏, 余艳玲, 肖蕊, 潘传燕, 宋漫玲, 张永德. 卵形鲳鲹Myostatin基因克隆及其在胚胎发育中的表达分析[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 136-147. |
[5] | 郭辰, 周飞, 韩彪, 潘翠, 吴洁敏, 杨婷, 尚常花. 假单胞菌亮氨酸氨肽酶基因克隆及生物信息学分析[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 156-164. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |